

TARGET MATHEMATICS THE EXCELLENCE KEY AGYAT GUPTA (M.Sc., M.Phil.)

CODE:- AG-5-7989

REGNO:-TMC-D/79/89/36

General Instructions:-

- 1. All question are compulsory.
- The question paper consists of 29 questions divided into three sections A,B and C. Section A comprises of 10 question of 1 mark each. Section B comprises of 12 questions of 4 marks each and Section C comprises of 7 questions of 6 marks each.
- 3. Question numbers 1 to 10 in Section A are multiple choice questions where you are to select one correct option out of the given four.
- 4. There is no overall choice. However, internal choice has been provided in 4 question of four marks and 2 questions of six marks each. You have to attempt only one If the alternatives in all such questions.
- 5. Use of calculator is not permitted.
- **6.** Please check that this question paper contains 5 printed pages.
- 7. Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.

सामान्य निर्देश :

- 1. सभी प्रश्न अनिवार्य हैं।
- 2. इस प्रश्न पत्र में 29 प्रश्न है, जो 3 खण्डों में अ, ब, व स है। खण्ड अ में 10 प्रश्न हैं और प्रत्येक प्रश्न 1 अंक का है। खण्ड ब में 12 प्रश्न हैं और प्रत्येक प्रश्न 4 अंको के हैं। खण्ड स में 7 प्रश्न हैं और प्रत्येक प्रश्न 6 अंको का है।
- 3. प्रश्न संख्या 1 से 10 बहुविकल्पीय प्रश्न हैं। दिए गए चार विकल्पों में से एक सही विकल्प चुनें।
- 4. इसमें कोई भी सर्वोपरि विकल्प नहीं है, लेकिन आंतरिक विकल्प 4 प्रश्न 4 अंको में और 2 प्रश्न 6 अंको में दिए गए हैं। आप दिए गए विकल्पों में से एक विकल्प का चयन करें।
- 5. कैलकुलेटर का प्रयोग वर्जित हैं।
- 6. कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 5 हैं।
- 7. प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।

Pre-Board Examination 2011 -12

 Time : 3 Hours
 अधिकतम समय : 3

 Maximum Marks : 100
 अधिकतम अंक : 100

 Total No. Of Pages : 5
 कुल पृष्ठों की संख्या : 3

Total	No. Of Pages :5		कुल पृष्ठों की संख्या : 5
CLA	ISS – XII	CBSE	MATHEMATICS
		PART – A	
Q.1	Find the maximum a .max =-2, mini=-3	nd minimum value	es, if any of $f(x) = \sin 3x - 3$. Ans
Q.2	Find the direction cos	sines of x-axis. An	s (1,0,0).
Q.3	If the following matrix $= \begin{bmatrix} 0 & a & 3 \\ 2 & b & -1 \\ c & 1 & 0 \end{bmatrix}.$		ric, find the values of a, b, c.If A = -3
Q.4	Evaluate: $\int (e^x \log a +$	$e^{a} \log x + e^{a} \log$	a) dx . Ans $.\frac{a^x}{\log a} + \frac{x^{a+1}}{a+1} + a^a x + c$
Q.5	Evaluate: $\int \frac{dx}{x^2(x^4 + x^2)}$	$\frac{c}{(-1)^{3/4}}$. Ans= - $(1-1)^{3/4}$	$(+x^{-4})^{\frac{1}{4}} + c$
Q.6	Find the point on the change at the same ra		for which the abscissa and ordinate 4)
Q.7	Find the inverse eler 4,d = 8-a Ans=	ment of the binar	y relation $a \otimes b = a + b - 4$. Ans $e =$
Q.8	The slope of tangent	to curve $y = \frac{x - x}{x - x}$	$\frac{1}{2}atx = 10. \text{ Ans } \frac{dy}{dx} = -\frac{1}{64}$
Q.9	If $A^2 = A$ for $A =$	$\begin{bmatrix} -1 & b \\ -b & 2 \end{bmatrix}$, then fin	and the value of b. Ans $b=\pm\sqrt{2}$
Q.10	Find the value of sec ²	2 (tan ⁻¹ 2). Ans = 5	
		PART – B	

Target Mathematics by- AGYAT GUPTA; Resi.: D-79 Vasant Vihar; Office: 89-Laxmi bai colony Ph.: 2337615; 4010685®, 2630601(O) Mobile: 9425109601; 9425110860;9425772164(P)

Q.11	Define a binary operation * on the set $\{0, 1, 2, 3, 4, 5\}$ as $a * b =$				
	$\left[a+b, \text{if } a+b<6 \right]$				
	$\begin{cases} a+b, & \text{if } a+b < 0 \\ a+b-6, & \text{if } a+b \ge 6 \end{cases}$. Show that zero is the identity for this operation and				
	each element a of the set is invertible with $6 - a$ being the inverse of a .				
Q.12	It is given that for the function f given by $f(x) = x^3 + bx^2 + ax, x \in [1,3]$				
	Rolle's theorem holds with $c = 2 + \frac{1}{\sqrt{3}}$. Find the values of a and b. Ans a				
0.12	= 11; b = -6				
Q.13	$\begin{vmatrix} a & b & c \end{vmatrix}$				
	$\begin{vmatrix} \mathbf{p}_{rove that} & a - b & b - c & c - a \end{vmatrix} = a^3 + b^3 + c^3 - 3abc$ Also prove that				
	Prove that $\begin{vmatrix} a & b & c \\ a-b & b-c & c-a \\ b+c & c+a & a+b \end{vmatrix} = a^3 + b^3 + c^3 - 3abc$. Also prove that				
	value of determinant is always positive if a, b, c is positive real number.				
Q.14	. (
	Evaluate: $\int_0^1 \sin^{-1} \left(x \sqrt{1 - x} - \sqrt{x} \sqrt{1 - x^2} \right) dx, 0 \le x \le 1$. Ans $= \frac{\pi}{4} - 1$				
	OR				
	$\pi/2$				
	Evaluate: $\int \sin 2x \tan^{-1}(\sin x) dx. \text{ Ans} = \frac{\pi}{2} - 1$				
0.15	0				
Q.15	Find all the points of discontinuity of the function $f(x) = [x^2]$ on [1,				
	2)where []denotes the greatest integer function. Ans f (x) =				
	$\begin{bmatrix} 1 & x \in [1,\sqrt{2}) \end{bmatrix}$				
	$\left\{2 : x \in \left[\sqrt{2}, \sqrt{3}\right]\right\}$ at $x = \sqrt{2}$; $RHL = 2 \& LHL = 1 : RHL \neq LHL$ at				
	$\begin{cases} 1 & ; & x \in [1, \sqrt{2}) \\ 2 & ; & x \in [\sqrt{2}, \sqrt{3}) \\ 3 & ; & x \in [\sqrt{3}, 2) \end{cases} \text{ at } \mathbf{x} = \sqrt{2}; RHL = 2 \& LHL = 1 :. RHL \neq LHL \text{ at}$				
	$=\sqrt{3}$; $RHL = 3 & LHL = 2 :: RHL \neq LHL$ there fore poit of discontinuity				
	$\sqrt{2} \& \sqrt{3}$ on [1,2)				
	L / /				

Find the particular solution of the differential equation
$$(xdy - ydx)y.\sin\left(\frac{y}{x}\right) = (ydx + xdy)x\cos\frac{y}{x}, \text{ given that } y = \pi$$
 when x = 3. Ans $\sec\frac{y}{x} = \frac{2xy}{3\pi}$

Solve the differential equation: $\frac{d^2x}{dy^2} = y \sin^2 y$..

$$x = \frac{y^3}{12} + \frac{y}{8}\cos 2y - \frac{\sin 2y}{8}$$
OR

Q.17

Form a differential equation of the curve $xy = Ae^x + Be^{-x} + x^2$, A and

B are arbitrary constants. Ans
$$x \frac{d^2y}{dx^2} + 2 \frac{dy}{dx} = xy - x^2 + 2$$

Q.18 An urn contains 25 balls of which 10 balls bear a mark 'X' and the remaining 15 bear mark 'Y'. A ball is drawn at random from the urn, its mark is noted down and it is replaced. If 6 balls are drawn in this way, find the probability that (i) all will bear 'X' mark. (ii) not more than 2 will bear 'Y' mark (iii) at least one ball will bear 'Y' mark (iv) the number of

balls with 'X' mark and 'Y' mark will be equal. Ans (i) $\frac{64}{15625}$

(ii)
$$\frac{2796}{15625}$$
 (iii) $\frac{15561}{15625}$ (iv) $\frac{864}{3125}$

OR

In a hurdle race , a player has to cross 10 hurdles . The probability that he will clear each hurdle is $5\ /\ 6$.What is the probability that he will knock

down fewer than 2 hurdles ? Ans
$$\frac{5^9 \times 15}{6^{10}} = \frac{5^{10}}{6^{10}} \times 3$$

Q.19	If $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$, show that $\vec{a} - \vec{d}$ is parallel to $\vec{b} - \vec{c}$
	where $\vec{a} \neq \vec{d} \& \vec{b} \neq \vec{c}$.

Q.20 If
$$y = \cot^{-1}(\sqrt{\cos x}) - \tan^{-1}(\sqrt{\cos x})$$
 Prove that $\sin y = \tan^2 \frac{x}{2}$.

If
$$y = (x + \sqrt{x^2 + 1})^m$$
, then show that $(x^2 + 1)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - m^2y = 0$.

OR

If $y = x^x$ then prove that $\frac{d^2y}{dx^2} - \frac{1}{y}(\frac{dy}{dx})^2 - \frac{y}{x} = 0$.

Q.22 Find the vector equation of the line parallel to the line $\frac{x-1}{2} = \frac{2-y}{-3} = \frac{z-3}{4}$ and passing through the point (2, 4, 5). Also find

the distance between two lines . Ans $\vec{r} = (2i + 4j + 5k) + \lambda(2i + 3j + 4k)$

S.D. =
$$\frac{\left| \left(\overrightarrow{a_2} - \overrightarrow{a_1} \right) \times \overrightarrow{b} \right|}{\left| \overrightarrow{b} \right|} = \frac{\sqrt{5}}{\sqrt{29}} & \left(\overrightarrow{a_2} - \overrightarrow{a_1} \right) \times \overrightarrow{b} = 2i - k$$

PART - C

Q.23 If
$$A = \begin{bmatrix} 2 & 3 & 4 \\ 5 & 4 & -6 \\ 3 & -2 & -2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 20 & 2 & 34 \\ 8 & 16 & -32 \\ 22 & -13 & 7 \end{bmatrix}$ are two square

matrices, find AB and hence Solve the system of linear equation :

$$\frac{2}{x} + \frac{3}{y} + \frac{4}{z} = -3; \\ \frac{5}{x} + \frac{4}{y} - \frac{6}{z} = 4; \\ \frac{3}{x} - \frac{2}{y} - \frac{2}{z} = 6.$$
 Ans
$$\begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}$$

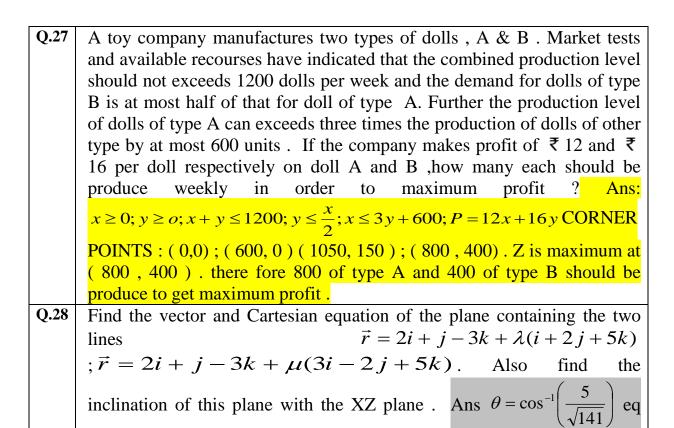
Evaluate :
$$\int \frac{1}{\sin x (5 - 4\cos x)} dx$$

Ans.
$$\frac{1}{2}\log(1-\cos x) - \frac{1}{18}\log(1+\cos x) - \frac{4}{9}\log((5-4\cos x))$$

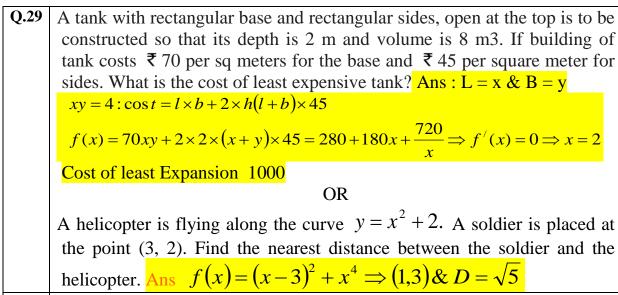
Q.25 Two bag A and B contains 4 white and 3 black balls and 2 white and 2 black balls respectively. From bag A, two balls are drawn at random and then transferred to bag B. A ball is then drawn from bag B and is found to be a black ball. What is the probability that the transferred balls were 1 white and 1 black? Ans Required Probability

$$=\frac{\frac{24}{42} \times \frac{3}{6}}{\frac{12}{42} \times \frac{2}{6} + \frac{6}{42} \times \frac{4}{6} + \frac{24}{42} \times \frac{3}{6}} = \frac{3}{5}$$

Q.26 Draw the rough sketch of the region enclosed between the circles $x^2 + y^2 = 4$ and $(x-2)^2 + y^2 = 1$. Using integration, find the area of the enclosed region . Ans Required Area =


$$2\left\{\int_{1}^{7/4} \sqrt{1-(x-2)^{2}} dx + \int_{7/4}^{2} \sqrt{4-x^{2}} dx\right\} = \frac{5\pi}{2} - \frac{\sqrt{15}}{2} - \sin^{-1}\left(\frac{1}{4}\right) - 4\sin^{-1}\left(\frac{7}{8}\right) \text{ sq.}$$

unit


OR

Prove that the curves $y^2 = 4x \& x^2 = 4y$ divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts. Ans

$$A_{1} = \int_{0}^{4} \left(x - \sqrt{4x} \right) dx = A_{2} = \int_{0}^{4} \left(\sqrt{4x} - \frac{x^{2}}{4} \right) dx = A_{3} = \int_{0}^{4} \left(\frac{x^{2}}{4} \right) dx = \frac{16}{3}$$

10x + 5y - 4z = 37

DON'T FALL BEFORE YOU'RE PUSHED.