



T 20<sup>th</sup>

**REGNO:-TMC -D/79/89/36** 

## **GENERAL INSTRUCTIONS:**

- 1. All question are compulsory.
- 2. The question paper consists of 29 questions divided into three sections A,B and C. Section A comprises of 10 question of 1 mark each. Section B comprises of 12 questions of 4 marks each and Section C comprises of 7 questions of 6 marks each .
- 3. Question numbers 1 to 10 in Section A are multiple choice questions where you are to select one correct option out of the given four.
- 4. There is no overall choice. However, internal choice has been provided in 4 question of four marks and 2 questions of six marks each. You have to attempt only one lf the alternatives in all such questions.
- 5. Use of calculator is not permitted.
- 6. Please check that this question paper contains 6 printed pages.
- 7. Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.

सामान्य निर्देश :

- 1. सभी प्रश्न अनिवार्य हैं।
- इस प्रश्न पत्र में 29 प्रश्न है, जो 3 खण्डों में अ, ब, व स है। खण्ड अ में 10 प्रश्न हैं और प्रत्येक प्रश्न 1 अंक का है। खण्ड – ब में 12 प्रश्न हैं और प्रत्येक प्रश्न 4 अंको के हैं। खण्ड – स में 7 प्रश्न हैं और प्रत्येक प्रश्न 6 अंको का है।
- 3. प्रश्न संख्या 1 से 10 बहुविकल्पीय प्रश्न हैं। दिए गए चार विकल्पों में से एक सही विकल्प चुनें।
- 4. इसमें कोई भी सर्वोपरि विकल्प नहीं है, लेकिन आंतरिक विकल्प 4 प्रश्न 4 अंको में और 2 प्रश्न 6 अंको में दिए गए हैं। आप दिए गए विकल्पों में से एक विकल्प का चयन करें।
- 5. कैलकुलेटर का प्रयोग वर्जित हैं ।
- 6. कृपया जाँच कर लें कि इस प्रश्न–पत्र में मुद्रित पृष्ठ 6 हैं।
- 7. प्रश्न–पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर–पुस्तिका के मुख–पृष्ठ पर लिखें।

| Pre-Board Examination 2011 -12 |                                                                                                   |                                                                            |  |
|--------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| Time : 3 Hours                 |                                                                                                   | अधिकतम समय : 3                                                             |  |
| Maximum Marks : 100            |                                                                                                   | अधिकतम अंक : 100                                                           |  |
| Total No. Of Pages :6          |                                                                                                   | कुल पृष्ठों की संख्या : 6                                                  |  |
| CLA                            | ISS – XII CBSE                                                                                    | <b>MATHEMATICS</b>                                                         |  |
| PART – A                       |                                                                                                   |                                                                            |  |
| Q.1                            | Find the coordinates of the point where                                                           | the line through $(5, 1, 6)$ and $(3, 4, 6)$                               |  |
|                                | 1) crosses the YZ-plane. Ans $\left(0, \frac{17}{2}, \frac{-1}{2}\right)$                         | $\left(\frac{3}{2}\right)$                                                 |  |
| Q.2                            | If A is a non-singular matrix such                                                                | that $A^{-1} = \begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$ , then find |  |
|                                | $(A^T)^{-1}$ , where $A^T$ is transpose of A.                                                     | Ans $(A^T)^{-1} = \begin{bmatrix} 5 & -2 \\ 3 & -1 \end{bmatrix}$          |  |
| Q.3                            | Write the number of all one-one function $\frac{1}{1000}$                                         | ons from the set $A = \{a, b, c\}$ to                                      |  |
| 0.4                            | In a triangle ABC, the sides AB and B                                                             | are represented by vectors                                                 |  |
| <b>x</b>                       | In a change ribe, the sides rib and $\vec{D}$                                                     | e die représented by vectors                                               |  |
|                                | 2i - j + 2k, $i + 3j + 5k$ respectively. Find the vector representing CA.                         |                                                                            |  |
|                                | Ans: -(3i+2j+7k)                                                                                  |                                                                            |  |
| Q.5                            | Evaluate $\int_{0}^{1} \frac{x}{x^{2}+1} dx$ . Ans $I = \frac{1}{2} [\log 2 - 0]$                 | $\mathbf{J} = \frac{1}{2} \log 2.$                                         |  |
| Q.6                            | Let $A = [a_{ij}]_{m \times 3}; B = [b_{ij}]_{p \times 4} an$                                     | $dC = [c_{ij}]_{2 \times 4}$ are such that                                 |  |
|                                | $A_{m\times 3}$ . $B_{p\times 4} = C_{2\times 4}$ ; find the value                                | of m and p. Ans $m = 2, p = 3$                                             |  |
| Q.7                            | Prove that : $\frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\frac{1}{3} = \frac{9}{4}\sin^{-1}\frac{2}{3}$ | $\frac{\sqrt{2}}{3}$ .                                                     |  |
| Q.8                            | The vectors $\vec{a} = 3\hat{i} + x\hat{j} - \hat{k} \& \vec{l}$                                  | $\vec{p} = 2\hat{i} + \hat{j} + y\hat{k}$ are mutually                     |  |

Target Mathematics by- **AGYAT GUPTA**; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

 Target Mathematics by- AGYAT GUPTA ;
 Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

 Ph. :2337615; 4010685®, 2630601(O)
 Mobile : 9425109601; 9425110860;9425772164(P)

$$\frac{|\mathbf{p}|_{\mathbf{r}} = -\frac{3}{12} \cdot y = \frac{41}{12}}{|\mathbf{r}|_{\mathbf{r}} = \frac{1}{12}} = |\vec{b}| \text{ find the values of x and y . Ans.}}{|\mathbf{r}|_{\mathbf{r}} = \frac{-3}{12} \cdot y = \frac{41}{12}}$$

$$\frac{|\vec{c}|_{\mathbf{r}} = \frac{-3}{12} \cdot y = \frac{41}{12}}{|\mathbf{r}|_{\mathbf{r}} = \frac{1}{12}} = |\vec{b}| \text{ find the values of x and y . Ans.}}{|\vec{c}|_{\mathbf{r}} = \frac{-3}{12} \cdot y = \frac{41}{12}}$$

$$\frac{|\vec{c}|_{\mathbf{r}} = \frac{4}{12} \cdot y = \frac{4}{12}}{|\vec{c}|_{\mathbf{r}} = \frac{1}{12}} = |\vec{c}|_{\mathbf{r}} = \frac{1}{12} \cdot y = \frac{1}{12} \cdot y = \frac{1}{12} \cdot y = \frac{1}{12} \cdot y = \frac{1}{12} \cdot \frac{1}{12} \cdot \frac{1}{12} \cdot \frac{1}{2} \cdot \frac{1}{2$$

determinants, prove

 $x \frac{d^2 y}{d^2} = 1$  given

 $+(\log x)^{x}$   $\frac{1+\log x \cdot \log(\log x)}{\log x}$ 

log x

the

and III, each containing two coins. In box

following:

that

equation

 $y = x \log x - x + 2$ 

|      | <b>Solution</b> Let $E_1$ , $E_2$ and $E_3$ be the events that boxes I, II and III are chosen, respectively. |  |
|------|--------------------------------------------------------------------------------------------------------------|--|
|      | Then $P(E_1) = P(E_2) = P(E_3) = \frac{1}{3}$                                                                |  |
|      | Also, let A be the event that 'the coin drawn is of gold'                                                    |  |
|      | Then $P(A E_1) = P(a \text{ gold coin from bag } I) = \frac{2}{2} = 1$                                       |  |
|      | $P(A E_2) = P(a \text{ gold coin from bag II}) = 0$                                                          |  |
|      | $P(A E_3) = P(a \text{ gold coin from bag III}) = \frac{1}{2}$                                               |  |
|      | Now, the probability that the other coin in the box is of gold                                               |  |
|      | = the probability that gold coin is drawn from the box I.                                                    |  |
|      | $= P(E_1 A)$                                                                                                 |  |
|      | By Bayes' theorem, we know that                                                                              |  |
|      | $P(E \mid A) = \frac{P(E_1)P(A E_1)}{P(E_1)P(A E_1)}$                                                        |  |
|      | $P(E_1)P(A E_1) + P(E_2)P(A E_2) + P(E_3)P(A E_3)$                                                           |  |
|      | 1                                                                                                            |  |
|      | $=\frac{-\frac{-1}{3}}{-\frac{-1}{3}}=\frac{2}{-\frac{-1}{3}}$                                               |  |
|      | $\frac{1}{3} \times 1 + \frac{1}{3} \times 0 + \frac{1}{3} \times \frac{1}{2}$ 3                             |  |
| 2.19 | Show that each of the relation R in the set A =                                                              |  |
|      | $\{x \in 2: 0 \le x \le 12\}$ , given by                                                                     |  |
|      | (i) R= {(a,b): $ a-b $ is a multiple of 4}. Ans {1,5,9}                                                      |  |
|      | (ii)R= {(a,b):a = b} is an equivalence relation .Find the set of all elements                                |  |
| ) 20 | to 1 in each cases. Ans {1}<br>Find the intervals in which the function ( given by                           |  |
| 2.40 | f ring the intervals in which the function $f$ given by                                                      |  |



**Target Mathematics by- AGYAT GUPTA ;** Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

 Target Mathematics by- AGYAT GUPTA ;
 Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

 Ph. :2337615; 4010685®, 2630601(O)
 Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

Q.23Using integration, find the area of the triangle bounded by the lines 
$$y = 2x$$
  
 $+ 1, y = 3x + 1$  and  $x = 4$ . Ans Required Area  
 $= \frac{1}{1}(3x+1)dx - \frac{1}{9}(2x+1)dx - 8anit^2$   
OR  
Sketch the region common to the circle  $x^2 + y^2 = 25$  and the parabola  
 $y^2 = 8x$ . Also, find the area of the region using integration. Ans  
 $= \frac{2\sqrt{2}}{2}(\sqrt{41}-4)^2 + \frac{25\pi}{2} - 25\sin^3(\frac{\sqrt{41}-4}{5}) + g2\pi - 25\pi - 25\pi$ 

 Target Mathematics by- AGYAT GUPTA ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

 Ph. :2337615; 4010685®, 2630601(O)
 Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

 Target Mathematics by- AGYAT GUPTA ;
 Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

 Ph. :2337615; 4010685®, 2630601(O)
 Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

## THE IDEAL ATTITUDE IS TO BE PHYSICALLY LOOSE AND MENTALLY TIGHT.