CLASS – XI

CBSE

MATHEMATICS

TARGET MATHEMATICS

AGYAT GUPTA (M.Sc., M.Phil.)

CODE:- AG-4-1899

REGNO:-TMC-D/79/89/36

General Instructions:

- 1. All question are compulsory.
- The question paper consists of 29 questions divided into three sections A,B and C. Section A comprises of 10 question of 1 mark each. Section B comprises of 12 questions of 4 marks each and Section C comprises of 7 questions of 6 marks each.
- 3. Question numbers 1 to 10 in Section A are multiple choice questions where you are to select one correct option out of the given four.
- 4. There is no overall choice. However, internal choice has been provided in 4 question of four marks and 2 questions of six marks each. You have to attempt only one If the alternatives in all such questions.
- 5. Use of calculator is not permitted.
- 6. Please check that this question paper contains 5 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.

Pre-Board Examination 2011 -12

 Time : 3 Hours
 अधिकतम समय : 3

 Maximum Marks : 100
 अधिकतम अंक : 100

 Total No. Of Pages : 5
 कुल पृष्टों की संख्या :

Total	No. Of Pages :5					कुल	पृष्ठों व	की संख्य	T:5
CLASS – XI		(CBSE			MATHEMATICS			
	PART – A								
Q.1	Prove that: 8 cos	$\frac{\pi}{9}$ - 6	$\cos \frac{\pi}{9}$	= 1.					
Q.2	Find a positive	value of	f m for	which	the	coefficient	of	x^2 in	the
	expansions	of	(1+	$(x)^m$ is	S	6		F	<mark>Ans:</mark>

CLASS – XI

CBSE MATHEMATICS

	${}^{m}c_{2} = 6 \Rightarrow m^{2} - m - 12 = 0 \Rightarrow m = 4 \& m \neq 3$
Q.3	How many words can be formed by arranging the letters of the word
	'BILASPUR' do not change the relative position of vowels &
	consonants? Ans 3!5!=720
	Solve the equation : $x^2 + 3ix + 10 = 0$. Ans $x = 2i$, -5 i
Q.5	If $T_n = \frac{2T_{n-1} + 3}{4}$ find T_2 where $T_1 = 3$. Ans: $T_2 = \frac{9}{4}$

Q.6 Express as a factorial
$$1 \times 3 \times 5 \times \dots \times 15$$
 Ans $\frac{16!}{2^8 8!}$

Q.7 Find the value of k for which the line
$$(k-3)x - (4-k^2)y + k^2 - 7k + 6 = 0$$
 is passing through origin . Ans $(k-6)(k-1) = 0 \Rightarrow k = 6$;1

Q.8 Let
$$A = \{1,2\}, B = \{1,2,3,4\}, C = \{5,6\} \text{ Find } A \times (B \cap C) \cdot A \times (B \cap C) = \{ \} or \varphi$$

Q.9 For what point on the parabola
$$y^2 = 16x$$
 is the abscissa equal to twice the ordinate? Ans. . (0,0) & (64,32)

Find the general solution of sec
$$x = \frac{2}{\sqrt{3}}$$
. Ans. $2n\pi \pm \frac{\pi}{6}$

PART - B

Q.11 Find, the 4th term from the end in the expansion of
$$\left(\frac{3}{x^2} - \frac{x^3}{6}\right)^7$$
. Ans:

$$T_5 = {}^7 c_4 \left(\frac{3}{x^2}\right)^{7-4} \left(\frac{-x^3}{6}\right)^4 = \frac{35 x^6}{48}$$

Q.12 Prove that:
$$\cos 6\theta = 32\cos^6 \theta - 48\cos^4 \theta + 18\cos^2 \theta - 1$$
.

Q.13 Find the sum of the following series up to
$$n$$
 terms $5 + 55 + 555$

CBSE

MATHEMATICS

_		
Q.14	$f(x) = x^2 - 3x + 2$	$D_f = R - \{2, -3\}$
	Find the domain and range of $f(x) = \frac{x^2 - 3x + 2}{x^2 + x - 6}$.	$R_f = R - \left\{ \frac{1}{5}, 1 \right\}$

OR

range of $f(x) = \sqrt{25-x^2}$. Find $D_f = [-5,5]or - 5 \le x \le 5; R_f = [0,5]orRange = \{y : y \in R, 0 \le y \le 5\}$

- Q.15 A circle of radius 2 lies in the first quadrant and touches both the axes. Find the equation of the circle with centre at (6,5) and touching the above circle externally. Ans $(x-6)^2 + (y-5)^2 = 3^2$
- Q.16 From a pack of 52 cards, 3 cards are drawn at random. Find the probability that there will be at least one king amoung them . Ans: Required probability = at least one king = 1 – none king =

$$1 - \frac{{}^{48}c_3}{{}^{52}c_3} = \frac{1201}{5525}$$
 OR Required probability = one king & two none king + two king & one none king + all king

+ two king & one none king + all king

$$= \frac{{}^{4}c_{1} \times {}^{48}c_{2}}{{}^{52}c_{3}} + \frac{{}^{4}c_{2} \times {}^{48}c_{1}}{{}^{52}c_{3}} + \frac{{}^{4}c_{3} \times {}^{48}c_{0}}{{}^{52}c_{3}} = \frac{1201}{5525}$$

- Q.17 Prove the mathematical induction: $2.7^n + 3.5^n - 5$ is divisible by 24 for all $n \in N$.
- Q.18 Prove that P(n,r) = P(n-1,r) + rp(n-1,r-1).
- Q.19 Prove that: $\tan 4\theta = \frac{4 \tan \theta - 4 \tan^3 \theta}{1 - 6 \tan^2 \theta + \tan^4 \theta}$.
- Evaluate $\lim_{x \to \pi/2} \frac{1 \sin^3 x}{\cos^2 x}$. Ans $\frac{3}{2}$ Q.20

CLASS - XI

CBSE

MATHEMATICS

Using first principal find the derivative of $\cos \sqrt{x}$ w.r.to x. Ans

0.21 Convert the complex number $\frac{1}{\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}}$. Ans: $\sqrt{2} \left(\cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12}\right)$

OR

If α and β are different complex numbers with $|\beta| = 1$, then find

$$\left| \frac{\beta - \alpha}{1 - \vec{\alpha}\beta} \right|$$
. Ans: 1

Q.22 Find equation of the line passing through the point (3.4) and cutting off intercepts on the axes whose sum is 14. Ans: x + y = 7 & 4x + 3 y = 24.

Find the ratio in which the line segment joining the points (4, 8, 10) and (6, 10, -8) is divided by the YZ-plane. Also find the point of division.

Ans Externally are in the ratio 2: 3
$$\left(\frac{4+6k}{k+1}, \frac{8+10k}{k+1}, \frac{10-8k}{k+1}\right) \therefore \frac{4+6k}{k+1} = 0 \Rightarrow k = \frac{-2}{3} \text{ point of division is } (0,4,46)$$

PART - C

- Q.23 How many litres of water will have to be added to 1125 litres of the 45% solution of acid so that the resulting mixture will contain more than 25% but less than 30% acid content? Ans: 25% of (1125 + x) < 45% of 1125< 30 % of (1125 + x); 562.5 < x < 900
- Q.24 If all the letters of the word "AGAIN" be arranged as in a dictionary, what is the 25th, 49^{th} & 50^{th} word? Ans 25^{th} = GAAIN 49^{th} = NAAGI & $50^{\text{TH}} = \text{NAAIG}$ (Ans. 3600)
- Q.25 Find the equation of the hyperbola whose foci are (6, 4) and (-4, 4)

OR

CLASS – XI

CBSE

MATHEMATICS

CLASS – XI

CBSE

MATHEMATICS

and o	eccentricity is 2	. Ans. $12x^2 - 4y^2 - 24x + 32y - 127 = 0$
-------	-------------------	---

Q.26 Find the sum : 1+5+13+29+... $istdiff:1,4,8,16,...;T_n = a.2^{n-1}+b;T_n = 4\times 2^{n-1}-3$

OR

If $S_1, S_2, S_3, \ldots, S_m$ are the sum of n terms of an A.P. whose first terms are 1,2,3...m and common diff are 1, 4, 7 ...(3m-2) respectively.

Show that $s_{1+}s_2 + \dots + s_m = \frac{mn}{4}(3mn - n - m + 3)$

Ans

$$S_1 = \frac{n}{2}(n+1); S_2 = \frac{n}{2}(4n); S_3 = \frac{n}{2}(7n-1)$$

$$S_1 + S_2 + S_3 + \dots S_n = \frac{n}{2} [(n+1) + (4n) + (7n-1) + \dots nterm]$$

$$\frac{n}{2} \left[\frac{m}{2} \left\{ 2(n+1) + (m-1)(3n-1) \right\} \right] = \frac{mn}{4} (3mn - n - m + 3)$$

Q.27 Calculate the mean, variance and standard deviation for the following distribution:

CI	30-40	40-50	50-60	60-70	70-80	80-90	90-100
F	3	7	12	15	8	3	2

Ans Mean = 62, Variance = 201, SD= $(\sigma) = \sqrt{201} = 14.17$

Q.28 If the 3rd,4th and 5th terms in the expansion of $(x+a)^n$ are 84,280 and 560 respectively, find x, a and n. Ans: $T_3 = 84 = {}^{n} c_2 x^{n-2} a^2; T_4 = 280 = {}^{n} c_3 x^{n-3} a^3; T_5 = 560 = {}^{n} c_4 x^{n-4} a^4$ x = 1; a = 2; n = 7

Q.29 A committee of 5 has to be formed from 6 boys and 4 girls. In how many ways can this be done when the committee consists of:(i) at least two girls are included?(ii) at most 2 girls are included?

$$(i)^4 c_2 \times^6 c_3 +^4 c_3 \times^6 c_2 +^4 c_4 \times^6 c_1 = 120 + 60 + 6 = 186$$

A MAN WHO DOESN'T TRUST HIMSELF
CAN NEVER TRULY TRUST ANYONE ELSE