

TARGET MATHEMATICS THE EXCELLENCE KEY AGYAT GUPTA (M.Sc., M.Phil.)

CODE:- AG-7-8979

REGNO:-TMC-D/79/89/36

GENERAL INSTRUCTIONS:

- 1. All question are compulsory.
- The question paper consists of 29 questions divided into three sections A,B and C. Section A comprises of 10 question of 1 mark each. Section B comprises of 12 questions of 4 marks each and Section C comprises of 7 questions of 6 marks each.
- 3. Question numbers 1 to 10 in Section A are multiple choice questions where you are to select one correct option out of the given four.
- 4. There is no overall choice. However, internal choice has been provided in 4 question of four marks and 2 questions of six marks each. You have to attempt only one If the alternatives in all such questions.
- 5. Use of calculator is not permitted.
- **6.** Please check that this question paper contains 5 printed pages.
- 7. Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.

सामान्य निर्देश

- 1. सभी प्रश्न अनिवार्य हैं।
- 2. इस प्रश्न पत्र में 29 प्रश्न है, जो 3 खण्डों में अ, ब, व स है। खण्ड अ में 10 प्रश्न हैं और प्रत्येक प्रश्न 1 अंक का है। खण्ड ब में 12 प्रश्न हैं और प्रत्येक प्रश्न 4 अंको के हैं। खण्ड स में 7 प्रश्न हैं और प्रत्येक प्रश्न 6 अंको का है।
- 3. प्रश्न संख्या 1 से 10 बहुविकल्पीय प्रश्न हैं। दिए गए चार विकल्पों में से एक सही विकल्प चुनें।
- 4. इसमें कोई भी सर्वोपरि विकल्प नहीं है, लेकिन आंतरिक विकल्प 4 प्रश्न 4 अंको में और 2 प्रश्न 6 अंको में दिए गए हैं। आप दिए गए विकल्पों में से एक विकल्प का चयन करें।
- 5. कैलकुलेटर का प्रयोग वर्जित हैं।
- 6. कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ट 5 हैं।
- 7. प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।

Pre-Board Examination 2011 -12

Time : 3 Hoursअधिकतम समय : 3Maximum Marks : 100अधिकतम अंक : 100Total No. Of Pages :6कुल पृष्टों की संख्या : 6

Max	imum Marks : 100		अधिकतम अंक : 100
Tota	1 No. Of Pages :6		कुल पृष्ठों की संख्या : 6
CL	ASS – XII	CBSE	MATHEMATICS
		PART - A	
Q.1	Find the value of t	$an^{-1}\left(\sqrt{3}\right) - sec^{-1}\left(-2\right)$	2) . Ans = $\frac{-\pi}{3}$
Q.2	In figure (a square), identify the followin	g vectors.(i) Coinitial (ii) Equa
		à	
	(iii)Collinear but no $.(i)a \& d,(ii)b \& d,(iii)$		Ans
Q.3	Find the slope of the point.(2, -1) Ar		$x = t^2 + 3t - 8$, $y = 2t^2 - 2t - 5$ a
Q.4		$\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and \vec{c}	$\vec{c} = 3\hat{i} + \hat{j}$ are such that $\vec{a} + \lambda \vec{b}$ of λ . Ans $\lambda = 8$
Q.5	1		then find $f^{-1}(x)$. Ans
	$f^{-1}(x) = \frac{9x - 7}{3}.$		
Q.6	Let relation $R = \{(,, R) \mid R = \{(,,$	$(x, y) \in w \times w : y = 2x - 4$	$\{4\}$. If (a, -2) and

	$(4,b^2)$ belong to relation R, find the value of a and b. Ans. a=1,b=2				
Q.7	Find values of k if area of triangle is 4 square units and vertices are				
	(k,0),(4,0),(0,2). Ans k=0,8				
Q.8	The number of all possible matrices of order 3×3 with each entry 0 or 1.				
	$Ans = 2^9$				
Q.9	Write the total number of binary operation on a set consisting of n				
	n^2				
0.10	element. ANS 11				
Q.10					
	$\vec{r} \cdot (3\hat{i} + 4\hat{j} - 12\hat{k}) + 13 = 0$, then find the value of p. Ans $p = 1, \frac{7}{3}$				
Q.11	PART - B				
Q.11	Show that the curve $y^2 = 8x \& 2x^2 + y^2 = 10$ intersect				
	orthogonally at the point $(1, 2\sqrt{2})$. Ans $m_1 \times m_2 = -1$				
Q.12	If \vec{a} , \vec{b} , \vec{c} are the position vectors of the vertices A, B, C of a \triangle ABC				
	respectively. Find an expression for the area of $\triangle ABC$ and hence deduce the condition for the points A, B, C to be collinear.				
	$area of \Delta ABC = \frac{1}{2} \begin{vmatrix} \overrightarrow{AB} \times \overrightarrow{BC} \end{vmatrix} \Rightarrow A(\Delta ABC) = 0 : \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{b} = 0$				
Q.13					
Q.10	Evaluate: $\int e^{-x} \sin^{-2} 4x dx$. Ans $\frac{e^{x}}{2} - \frac{e^{x} \cos 8x}{130} - \frac{4e^{x} \sin 8x}{65}$				
	Evaluate: J • Str. 1 Ans 2 130 65				
	OR				
	$c \left(x^2+1\right)$ $2e^x$				
	Evaluate: $\int e^x \left(\frac{x^2 + 1}{(x+1)^2} \right) dx$. Ans $e^x - \frac{2e^x}{x+1}$				

Find all point of discontinuity of f, where f is defined as following:
$$f(x) = \begin{cases} |x| + 3 & ifx \le -3 \\ -2x - 3 < x < 3 \\ 6x + 2 & ifx \ge 3 \end{cases}$$
Ans
$$f(x) = \begin{cases} -x + 3 & x \le -3 \\ -2x & -3 < x < 3 \\ 6x + 2 & x \ge 3 \end{cases}$$
continuous at $x = -3$ Whe; RHL=LHL = FUNCTIONAL VALUE = 6
& f(x) is not continuous at $x = 3$; RHL = 20 & LHL = -6

Q.15 Show that the following differential equation is homogeneous, and then
$$solve it: ydx + x log\left(\frac{y}{x}\right) dy - 2x dy = 0.$$
Ans
$$\left(\frac{\log \frac{y}{x} - 1}{x}\right)^2 = xc$$
Q.16 The volume of spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after t seconds.

Ans
$$r = (63t + 27)^{\frac{1}{3}}$$
OR

Find the particular solution of the differential equation
$$\frac{dy}{dx} + y \cot x = 2x + x^2 \cot x (x \ne 0) \text{ given that } y = 0 \text{ when } x = \frac{\pi}{2}.$$
Ans
$$y \sin x = x^2 \sin x - \frac{\pi}{4}$$
Q.17

Prove the following:
$$\cos[\tan^{-1}{\sin(\cot^{-1}x)}] = \sqrt{\frac{1+x^2}{2+x^2}}.$$

Q.18	Prove that: $\begin{vmatrix} (y+z)^2 & xy & zx \\ xy & (x+z)^2 & yz \\ xz & yz & (x+y)^2 \end{vmatrix} = 2xyz(x+y+z)^3.$			
	Prove that: $\begin{vmatrix} xy & (x+z)^2 & yz \\ \end{vmatrix} = 2xyz(x+y+z)^3$.			
	$ xz $ $ xz $ $ x+y ^2$			
Q.19	The probability of India wining a test match against West Indies is $1/3$. Assuming independence from match to match .Find the probability that in a 5 match series India's second win occurs at the third test . Ans $p = 1/3$			
	3; q = 2 / 3 Required probability;= ${}^{2}c_{1} \times \left(\frac{1}{3}\right) \times \left(\frac{2}{3}\right) \times \left(\frac{1}{3}\right) = \frac{4}{27}$ OR			
	A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is tossed three times ,find the probability distribution of number of			
	tails. Ans n = 3, P(H) = $\frac{3}{4}$, P(T) = $\frac{1}{4}$ $\frac{x}{p}$ $\frac{0}{27/64}$ $\frac{1}{27/64}$ $\frac{2}{9/64}$ $\frac{4}{1/64}$			
Q.20	,			
	$R = \{(a,b): a \le b^3\}$ is Reflexive, Symmetric & Transitive. Ans; Not			
	reflexive $\frac{1}{2} > \frac{1}{8} \Rightarrow \frac{1}{2}, \frac{1}{8} \in R : \left(\frac{1}{2}, \frac{1}{2}\right) \notin R$; symmetric $(1,3) \in R \Rightarrow (1,3) \notin R \& \text{not}$			
	transitive $(100,5) \in R & (5,2) \in R \Rightarrow (100,2) \notin R$			
Q.21	If $y = \frac{x \sin^{-1} x}{\sqrt{(1-x^2)}} + \log \sqrt{1-x^2}$. Prove that $\frac{dy}{dx} = \frac{\sin^{-1} x}{(1-x^2)^{3/2}}$.			
	OR			
	Prove that the derivative of $\tan^{-1} \left(\frac{\sqrt{1+x^2}-1}{x} \right)$ with respect to			
	$\tan^{-1}\left(\frac{2x\sqrt{1-x^2}}{1-2x^2}\right) \text{ at } x = 0, \text{ is } \frac{1}{4}.$			
Q.22	Find the equation of the perpendicular drawn from the point P (2, 4, -			

1) to the line
$$\frac{x+5}{1} = \frac{y+3}{4} = \frac{6-z}{9}$$
. Ans foot of prependicular is (-4,1,-3)& Equation of perpendiculaire
$$\frac{x-2}{6} = \frac{y-4}{3} = \frac{z+1}{2} or \frac{x+4}{6} = \frac{y-1}{3} = \frac{z+3}{2}$$

PART - C

Q.23 If
$$A^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$, find $(AB)^{-1}$ Ans

$$(AB)^{-1} = \begin{bmatrix} 9 & -3 & 5 \\ -2 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}, B^{-1} = \begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix}$$

A toy manufacturers produce two types of dolls; a basic version doll A and deluxe version doll B. Each doll of type B takes twice as long to produce as one doll of type A. The company have time to make a maximum of 2000, dolls of type A per day, the supply of plastic is sufficient to produce 1500 dolls per day and each type requires equal amount of it. The deluxe version i.e. type B requires a fancy dress of which there are only 600 per day available. If the company makes profit of ₹ 3 and ₹ 5 per doll respectively on doll A and B, how many of each should be produced weekly in order to maximize the profit? Solve it by graphical method. Ans: z = 3x + 5y $x+2y \le 2000, x+y \le 1500, y \le 600; x, y \ge 0.$ corner points: (0,0); (1500,0) (1000, 500) (800, 600) & (0, 600) Thus Z is maxmium at (1000, 500) and maximum value is 5500.

Q.25 Evaluate:
$$\int_{0}^{\pi} \frac{x}{a^{2} - \cos^{2} x} dx$$
. Ans. $\frac{\pi^{2}}{2a\sqrt{a^{2} - 1}}$

Using integration, find the area of the triangle bounded by the lines
$$x + 2y$$

Q.27 A die is thrown three times. Events A and B are defined as below:

A: 4 on the third throw

B: 6 on the first and 5 on the second throw

Find the probability of A given that B has already occurred. Ans Solution The sample space has 216 outcomes.

Now
$$A = \begin{cases} (1,1,4) & (1,2,4) \dots (1,6,4) & (2,1,4) & (2,2,4) \dots (2,6,4) \\ (3,1,4) & (3,2,4) & \dots (3,6,4) & (4,1,4) & (4,2,4) & \dots (4,6,4) \\ (5,1,4) & (5,2,4) & \dots & (5,6,4) & (6,1,4) & (6,2,4) & \dots (6,6,4) \end{cases}$$

$$B = \{(6,5,1), (6,5,2), (6,5,3), (6,5,4), (6,5,5), (6,5,6)\}$$

and $A \cap B = \{(6,5,4)\}.$

Now
$$P(B) = \frac{6}{216} \text{ and } P(A \cap B) = \frac{1}{216}$$

Then
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{216}}{\frac{6}{216}} = \frac{1}{6}$$

The probability of a shooter hitting a target is 3 / 4. How many minimum number of times must he/she fire so that the probability of hitting the

target at least once is more than

Solution Let the shooter fire *n* times. Obviously, *n* fires are *n* Bernoulli trials. In each trial, $p = \text{probability of hitting the target} = \frac{3}{4}$ and q = probability of not hitting the

target =
$$\frac{1}{4}$$
. Then $P(X = x) = {}^{n}C_{x} q^{n-x} p^{x} = {}^{n}C_{x} \left(\frac{1}{4}\right)^{n-x} \left(\frac{3}{4}\right)^{x} = {}^{n}C_{x} \frac{3^{x}}{4^{n}}$.

Now, given that,

P(hitting the target at least once) > 0.99

e. $P(x \ge 1) > 0.99$

0.99?

Therefore, 1 - P(x = 0) > 0.99

 $1 - {}^{n}C_{0}\frac{1}{4^{n}} > 0.99$

or ${}^{n}C_{0}\frac{1}{4^{n}} < 0.01$ i.e. $\frac{1}{4^{n}} < 0.01$

or $4^n > \frac{1}{0.01} = 100$

The minimum value of n to satisfy the inequality (1) is 4.

Thus, the shooter must fire 4 times.

State when the line $r = a + \lambda b$ is a parallel to the plane $r \cdot n = d$.

Show that the line $\vec{r} = (\hat{i} + \hat{j}) + \lambda(2\hat{i} + \hat{j} + 4\hat{k})$ is parallel to the plane

 $\overrightarrow{r} \cdot (-2 \overrightarrow{i} + \overrightarrow{k}) = 5$. Also find the distance between the line and the plane.

Ans Required Condition for line // to plane is $\vec{b} \cdot \vec{n} = 0$ and distance

	between plane and line $\frac{7}{\sqrt{5}}$		
Q.29	Find the shortest distance of the point $(0,c)$ from the parabola $y = x^2$,		
	where $0 \le c \le 5$. Ans $S.D. = \frac{1}{2}\sqrt{4c-1}$		
	OR		
	Prove that the radius of the right circular cylinder of greatest curved surface area which can be inscribed in a given cone is half of that of the		
	cone. Ans $H = h - x \cot \alpha CSA = f(x) = 2\pi RH = 2\pi x (h - x \cot \alpha)$		

	HAPPINESS IS NOTHING MORE THAN GOOD HEALTH AND		
	A BAD MEMORY.		