

TARGET MATHEMATICS THE EXCELLENCE KEY AGYAT GUPTA (M.Sc., M.Phil.)

CODE:- AG-8-3679

REGNO:-TMC-D/79/89/36

GENERAL INSTRUCTIONS:

- 1. All question are compulsory.
- The question paper consists of 29 questions divided into three sections
 A,B and C. Section A comprises of 10 question of 1 mark each. Section
 B comprises of 12 questions of 4 marks each and Section C comprises of 7 questions of 6 marks each.
- 3. Question numbers 1 to 10 in Section A are multiple choice questions where you are to select one correct option out of the given four.
- 4. There is no overall choice. However, internal choice has been provided in 4 question of four marks and 2 questions of six marks each. You have to attempt only one If the alternatives in all such questions.
- 5. Use of calculator is not permitted.
- **6.** Please check that this question paper contains 6 printed pages.
- 7. Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.

सामान्य निर्देश

- 1. सभी प्रश्न अनिवार्य हैं।
- 2. इस प्रश्न पत्र में 29 प्रश्न है, जो 3 खण्डों में अ, ब, व स है। खण्ड अ में 10 प्रश्न हैं और प्रत्येक प्रश्न 1 अंक का है। खण्ड ब में 12 प्रश्न हैं और प्रत्येक प्रश्न 4 अंको के हैं। खण्ड स में 7 प्रश्न हैं और प्रत्येक प्रश्न 6 अंको का है।
- 3. प्रश्न संख्या 1 से 10 बहुविकल्पीय प्रश्न हैं। दिए गए चार विकल्पों में से एक सही विकल्प चुनें।
- 4. इसमें कोई भी सर्वोपरि विकल्प नहीं है, लेकिन आंतरिक विकल्प 4 प्रश्न 4 अंको में और 2 प्रश्न 6 अंको में दिए गए हैं। आप दिए गए विकल्पों में से एक विकल्प का चयन करें।
- 5. कैलकुलेटर का प्रयोग वर्जित हैं।
- 6. कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 6 हैं।
- 7. प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।

Pre-Board	Examination	2011	-12

Time : 3 Hoursअधिकतम समय : 3Maximum Marks : 100अधिकतम अंक : 100Total No. Of Pages :6कुल पृष्ठों की संख्या : 6

LASS – XII	CBSE	MATHEMATICS

PART - A

- Q.1 Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the YZ-plane. Ans $\left(0, \frac{17}{2}, \frac{-13}{2}\right)$
- If A is a non-singular matrix such that $A^{-1} = \begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$, then find $(A^T)^{-1}$, where A^T is transpose of A. Ans $(A^T)^{-1} = \begin{bmatrix} 5 & -2 \\ 3 & -1 \end{bmatrix}$
- Q.3 Write the number of all one-one functions from the set A= { a, b, c } to itself. Ans = 6
- Q.4 In a triangle ABC, the sides AB and BC are represented by vectors $2\hat{i} \hat{j} + 2\hat{k}$, $\hat{i} + 3\hat{j} + 5\hat{k}$ respectively. Find the vector representing CA.

 Ans: -(3i+2j+7k)
- Q.5 Evaluate $\int_{0}^{1} \frac{x}{x^2 + 1} dx$. Ans $I = \frac{1}{2} [\log 2 0] = \frac{1}{2} \log 2$.
- Let $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times 3}$; $B = \begin{bmatrix} b_{ij} \end{bmatrix}_{p \times 4}$ and $C = \begin{bmatrix} c_{ij} \end{bmatrix}_{2 \times 4}$ are such that $A_{m \times 3} \cdot B_{p \times 4} = C_{2 \times 4}$; find the value of m and p. Ans m = 2, p = 3
- Prove that : $\frac{9\pi}{8} \frac{9}{4}\sin^{-1}\frac{1}{3} = \frac{9}{4}\sin^{-1}\frac{2\sqrt{2}}{3}$.
- Q.8 The vectors $\vec{a} = 3\hat{i} + x\hat{j} \hat{k} \& \vec{b} = 2\hat{i} + \hat{j} + y\hat{k}$ are mutually

	perpendicular. Given that $ \vec{a} = \vec{b} $, find the values of x and y. Ans.		
	$x = \frac{-31}{12}, y = \frac{41}{12}$		
Q.9	A random variable x has the following probability distribution:		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$p(x) = 0 + k + 2k + 2k + 3k + k^2 + 2k^2 + k + 7k^2 + 111d the value of k.$ Alls		
	/10		
Q.10	Evaluate: $\int \sec^2(7-x)dx \cdot \frac{\{Ans \tan(7-x) + C\}}{\{Ans \tan(7-x) + C\}}$		
Q.11	PART – B Find all the point of discontinuity of the function f defined by		
Q.11	Thid art the point of discontinuity of the function I defined by		
	$\begin{vmatrix} x+2 & x \leq 1 \end{vmatrix}$		
	$f(x) = \{x - 2 \mid 1 \le x \le 2\}$. Ans :Being a polynomial function $f(x)$ is		
	$f(x) = \begin{cases} x + 2 & x \le 1 \\ x - 2 & 1 < x < 2 \\ 0 & x \ge 2 \end{cases}.$ Ans :Being a polynomial function f (x) is		
	continuous function at all point for $x < 1 & 1 < x < 2$ To check the		
	continuity at $x = 1 & 2$. $f(x)$ is continuous at $x = 2 & discontinuous$ at $x = 1$		
	<u>.</u>		
Q.12	$\int x^3 + x$		
	Evaluate: $\int \frac{x^3 + x}{x^4 - 9} dx. \text{ Ans } : \frac{1}{4} \log(x^4 - 9) + \frac{1}{12} \log\left[\frac{x^2 - 3}{x^2 + 3}\right]$		
	OR		
	$\int \sin x dx = 1 \int dt = 1 \int c_x -1 = 2$		
	Evaluate: $\int \frac{\sin x}{\sin 4x} dx \cdot I = \frac{1}{4} \int \frac{dt}{(1-t^2)(1-2t^2)} = \frac{1}{4} \left[\int \left[\frac{-1}{1-t^2} + \frac{2}{1-t^2} \right] dt \right]$		
	-1 , $ 1+\sin x $ 1 , $ 1+\sqrt{2}\sin x $		
	$\frac{-1}{8}\log \frac{1+\sin x}{1-\sin x} + \frac{1}{4\sqrt{2}}\log \frac{1+\sqrt{2}\sin x}{1-\sqrt{2}\sin x}$		
	$ 1-\sin x 4\sqrt{2} 1-\sqrt{2}\sin x $		

Q.13	Solve the differential equation : $x \frac{d^2 y}{dx^2} = 1$ given that
	$y = 1, \frac{dy}{dx} = 0, when x = 1.$ Ans. $y = x \log x - x + 2$
Q.14	If $y = (\cos x)^{\log x} + (\log x)^x$; find $\frac{dy}{dx}$. Ans
	$\frac{dy}{dx} = (\cos x)^{\log x} \left[\frac{-x \tan x \log x + \log(\cos x)}{x} \right] + (\log x)^x \left[\frac{1 + \log x \cdot \log(\log x)}{\log x} \right]$
Q.15	If a unit vector \vec{a} makes angles $\frac{\pi}{4}$ and $\frac{\pi}{3}$ with x -axis and y - axis
	respectively and an acute angle θ with z-axis, then find θ and the (scalar
	and vector) components of \vec{a} along the axes. Ans. $\frac{1}{\sqrt{2}}i + \frac{1}{2}j + \frac{1}{2}k \& \theta = \frac{\pi}{3}$
Q.16	Solve the equation: $\sec^{-1} \frac{x}{a} - \sec^{-1} \frac{x}{b} = \sec^{-1} b - \sec^{-1} a$. Ans $x = \pm ab$
	OR
	Prove that : $\sin\left(2\tan^{-1}\frac{1}{3}\right) + \cos\left(\tan^{-1}2\sqrt{2}\right) = \frac{14}{15}$.
Q.17	\mathbf{c}
	$\begin{vmatrix} b+c & c+a & a+b \end{vmatrix} = \begin{vmatrix} a & b & c \end{vmatrix}$
	$\begin{vmatrix} q+r & r+p & p+q \end{vmatrix} = 2 \begin{vmatrix} p & q & r \end{vmatrix}.$
	$\begin{vmatrix} b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y \end{vmatrix} = 2 \begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix}.$
Q.18	
	I, both coins are gold coins, in box II, both are silver coins and in the box
	III, there is one gold and one silver coin. A person chooses a box at
	random and takes out a coin. If the coin is of gold, what is the probability

that the other coin in the box is also of gold?

Solution Let E₁, E₂ and E₃ be the events that boxes I, II and III are chosen, respectively.

Then
$$P(E_1) = P(E_2) = P(E_3) = \frac{1}{3}$$

Also, let A be the event that 'the coin drawn is of gold'

Then
$$P(A|E_1) = P(a \text{ gold coin from bag I}) = \frac{2}{2} = 1$$

 $P(A|E_2) = P(a \text{ gold coin from bag II}) = 0$

$$P(A|E_3) = P(a \text{ gold coin from bag III}) = \frac{1}{2}$$

Now, the probability that the other coin in the box is of gold

- = the probability that gold coin is drawn from the box I.
- $= P(E_1|A)$

By Bayes' theorem, we know that

$$\begin{split} P(E_1|A) &= \frac{P(E_1)P(A|E_1)}{P(E_1)P(A|E_1) + P(E_2)P(A|E_2) + P(E_3)P(A|E_3)} \\ &= \frac{\frac{1}{3}\times 1}{\frac{1}{3}\times 1 + \frac{1}{3}\times 0 + \frac{1}{3}\times \frac{1}{2}} = \frac{2}{3} \end{split}$$

- Q.19 Show that each of the relation R in the set A = $\{x \in 2: 0 \le x \le 12\}$, given by
 - (i) R= {(a,b): |a-b| is a multiple of 4} .Ans {1,5,9}
 - (ii)R= $\{(a,b): a = b\}$ is an equivalence relation .Find the set of all elements to 1 in each cases. Ans $\{1\}$
- Q.20 Find the intervals in which the function f given by

$$f(x) = \frac{4 \sin x - 2x - x \cos x}{2 + \cos x} \quad \text{on} \quad [0, 2\pi] \quad \text{is (i) increasing (ii)}$$

lecreasing. Ans : f (x) is increas ing on

$$\left(0,\frac{\pi}{2}\right) \cup \left(\frac{3\pi}{2},2\pi\right) \& \downarrow on\left(\frac{\pi}{2},\frac{3\pi}{2}\right)$$

OR

The two equal sides of an isosceles triangle with fixed base b are decreasing at the rate of 3 cm/sec. How fast is the area decreasing when the two equal sides are equal to the base? Ans $-\sqrt{3bcm^2/sec}$

Q.21 Show that $y = \cos ec^{-1}x$ is a solution of the differential equation

$$x(x^2-1)\frac{d^2y}{dx^2} + (2x^2-1)\frac{dy}{dx} = 0.$$

OR

Find the general solution of the differential equation

$$x \log x \cdot \frac{dy}{dx} + y = \frac{2}{x} \cdot \log x \left\{ \operatorname{Ans} (\log x) \cdot y = 2 \left[-\frac{1}{x} \log x - \frac{1}{x} \right] + c \right\}$$

By examining the chest X-ray, the probability that T.B. is detected when a person is actually suffering is 0.99. The probability that the doctor diagnoses is incorrectly that a person has T.B. on the basis of x-ray is 0.001. In a certain city, 1 in 1000 persons suffers from TB. A person is selected at random and is diagnosed to have T.B. What is the chance that he actually has T.B.? Ans: Required probability =

$$\frac{\frac{1}{1000} \times .99}{\frac{1}{1000} \times .99 + \frac{999}{1000} \times .001} = \frac{110}{221}$$

PART - C

Using integration, find the area of the triangle bounded by the lines
$$y = 2x + 1$$
, $y = 3x + 1$ and $x = 4$. Ans Required Area
$$= \int_{0}^{4} (3x+1)dx - \int_{0}^{4} (2x+1)dx = 8unit^{2}$$
 OR

Sketch the region common to the circle $x^2 + y^2 = 25$ and the parabola $y^2 = 8x$. Also, find the area of the region using integration. Ans $= \frac{2\sqrt{2}}{3} \left(\sqrt{41} - 4\right)^{\frac{3}{2}} + \frac{25\pi}{2} - 25\sin^{-1}\left(\frac{\sqrt{41} - 4}{5}\right), sq.units.$

Q.24 Evaluate:
$$\int_{0}^{3/2} |x \cos \pi x| dx$$
. Ans. $\int_{0}^{1/2} x \cos \pi x dx - \int_{1/2}^{3/2} x \cos \pi x dx = \frac{5}{2\pi} - \frac{1}{\pi^2}$

Q.25 State the condition under which the following system of equations have a unique solutions. If $A = \begin{bmatrix} 9 & 7 & 3 \\ 5 & -1 & 4 \\ 6 & 8 & 2 \end{bmatrix}$, find A^{-1} and hence solve the

following system of equations: 9x + 7y + 3z = 6; 5x - y + 4z = 1; 6x + 6

$$8y + 2z = 4$$
. Ans. $A^{-1} = \frac{-1}{70} \begin{bmatrix} -34 & 10 & 31 \\ 14 & 0 & -21 \\ +46 & -30 & -44 \end{bmatrix}, x = 1, y = 0, z = -1$

- Q.26 Find the equation of the plane passing through the line of intersection of the planes x 2y + z = 1 and 2x + y + z = 8 and parallel to the line with direction ratio 1,2,1. Also find the distance of P(1,-2,-2) from this plane measured along a line parallel to r = t (i 2j 5k) and i = 10 and i = 1
- Q.27 A rectangular sheet of paper for a poster is 15000 sq. cm. in area. The

margins at the top and bottom are to be 6 cm. wide and at the sides 4 cm. wide. Find the dimensions of the sheet to maximize the printed area. Ans length=138cm, breadth=92cm

OF

A square tank of capacity 250 cubic metres has to be dug out. The cost of the land is ₹ 50 per sq meter. The cost of digging increases with the depth and for the whole tank it is ₹ $400h^2$, where h meters is the depth of the tank. What should be the dimension of the tank so that the cost be minimum? Ans volume of tank = $x^2h = 250$; cost of land = $50x^2$; cost of digging = $400h^2$; Total cost = $50x^2 + 400h^2 = \frac{12500}{h} + 400h^2$ There fore length & breadth = 10 m, height = 2.5m

- Find the equation of the plane parallel to line $\frac{x}{1} = \frac{y-7}{-3} = \frac{z+7}{2}$ and containing the lines $\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$ in vector and Cartesian form , also find distance of plane from origin . Ans x+y+z=0 , r(i+j+k)=0 & D = 0
- Q.29 A furniture firm manufactures chairs and tables, each requiring the use of three machines A, B and C. Production of one chair requires 2 hours on machine A, 1 hour on machine B and 1 hour on machine C. Each table requires 1 hour each on machine A and B and 3 hours on machine C. The profit obtained by selling one chair in ₹ 30 while by selling one table the profit is ₹ 60. The total time available per week on machine A is 70 hours, on machine B is 40 hours and on machine C is 90 hours. How many chairs and tables should be made per week so as to maximize profit? Formulate the problem as L.P.P. and solve it graphically. Ans :z = 30x + 60 y $x, y \ge 0$; $(2x + y \le 70x + y \le 40x + 3y \le 90$ corner points : (0,0); (35,0); (30,10) (15,25); (0,30) number of chair =x = 15 & table = y = 25 maximum profit = 1950

THE IDEAL ATTITUDE IS TO BE PHYSICALLY
LOOSE AND MENTALLY TIGHT.