23. In the figure, diagonals AC and BD of quadrilateral ABCD intersect at O such that OB = OD. If AB = CD then show that

 $ar (\Delta DOC) = ar (\Delta AOB)$

24. Three coins are tossed simultaneously 200 times with the following frequencies of different outcomes.

Outcome	3 heads	2 heads	1 head	No head
Frequency	23	72	77	28

From the above compute the probability of the following:

- (i) at least 2 heads
- (ii) 3 tails
- (iii) at most one head

Section D (4 marks each)

25. In a parallelogram ABCD, E and F are the mid points of sides AB and CD respectively. Show that the line segment AF and EC trisects the diagonal BD.

26. Construct a \triangle ABC whose perimeter is 12 cm, \angle B = 60° and \angle C = 45°. Justify the construction.

Or

Construct a $\triangle ABC$ in which $\angle B = 30^{\circ}$ and $\angle C = 90^{\circ}$ and the perimeter of the triangle is 11 cm.

- **27.** The taxi fare in a city is as follows: For the first kilometer, the fare is Rs. 8 and for the subsequent distance it is Rs. 5 per km. Taking the distance covered as *x* km and total fare as Rs. *y*, write a linear equation for this information, and draw its graph.
- 28. A cone of radius 7 cm has a curved surface area 550 cm². Find its volume. [use $\pi = \frac{22}{7}$]
- **29.** Two equal chords AB and CD of a circle when produced, intersect at point P. Prove that PB = PD.
- **30.** Prove that the parallelograms on the same base and between the same parallels are equal in area.

Er Manish Bhadoria's Interactions Study Circle, Nimbalkar's Goth – 2, Kampoo, Lashkar, Gwalior, Ph: 6450282, Mob: 8989-700-940 Website: manishbhadoria.blogspot.com

Nimbalkar's Goth - 2, Kampoo, Lashkar, Gwalior Ph: 6450282 (0), Mob: 8989-700-940 Website: manishbhadoria.blogspot.com

Test - 1

Time: 3 h 9th CBSE Maths

Max Marks: 90

Section A (MCQs – 1 mark each)

- Age of 'x' exceeds age of 'y' by 7yrs. This statement can be expressed as linear equation as:
 - (A) x + y + 7 = 0

(B) x - y + 7 = 0

(C) x - y - 7 = 0

- (D) x + y 7 =
- **2.** If area of $\|g^m \land BCD$ is 80 cm^2 then ar $(\triangle ADP)$ is:

- (a) 80 cm^2
- (b) 60 cm^2
- (c) 50 cm
- (d) 40 cm²
- 3. A linear equation in two variables has how many solutions?
 - (A) one
- (B) two
- (C) infinite
- (D) not possible
- **4.** In the given figure O is the centre of circle. If $\angle OAB = 30^{\circ}$ and $\angle OCB = 40^{\circ}$, then measure of $\angle AOC$ is :

- (a) 70°
- (b) 220°
- (c) 140°
- (d) 110°
- 5. Class mark of a particular class is 10.5 and class size is 7, then class interval is :
 - (A) 10.5 17.5
- (B) 3.5 10.5
- (C) 7-17.5
- (D) 7 14
- 6. Curved surface area of hemisphere of diameter 2r is:
 - (a) $2\pi r^2$
- (b) $3\pi r^2$
- (c) $4\pi r^2$
- (d) $8\pi r^2$
- 7. In a class, there are x girls and y boys, a student is selected at random, then the probability of selecting a boy is :
 - (A) x/y

CBSE Maths

- (B) x/(x+y)
- (C) y/(x+y)
- (D) y/x
- 8. If slant height of a cone is 13 cm and the base radius is 5 cm, then the height of cone is:
 - (A) 12 cm
- (B) 8 cm
- (C) 10 cm
- (D) 18 cm

Section B (2 marks each)

- 9. D is the mid point of side BC of \triangle ABC and E is the mid point of AD, then show that ar (BED) = $\frac{1}{4}$ ar (ABC)
- 10. Curved surface area of a right circular cylinder is 4.4 m^2 . If the radius of the base of the cylinder is 0.7 m, find its height. [use $\pi = \frac{22}{7}$].
- 11. Find the median of first ten prime numbers.
- **12.** A die is thrown 500 times, the frequency of outcomes 1, 2, 3, 4, 5 and 6 are noted in the following frequency distribution table :

(Outcome	1	2	3	4	5	6
]	Frequency	90	70	75	95	88	82

Find the probability of occurrence of a prime number.

13. In the figure $\angle ABC = 69^{\circ}$; $\angle ACB = 31^{\circ}$. Find $\angle BDC$.

Or

In a cyclic quadrilateral ABCD, if AB \parallel CD and \angle B=70°, find the measures of the remaining angles of the quadrilateral.

14. Find the mean of 3, 4, 6, 7, 8, 14. If 5 is added to each observation, what will be the new mean.

Section C (3 marks each)

- **15.** Draw the graph of the equation 2x-3y=5. From the graph, find the value of y when x=4.
- **16.** In a quadrilateral ABCD, AO and BO are the bisectors of \angle A and \angle B respectively.

Prove that
$$\angle AOB = \frac{1}{2} (\angle C + \angle D)$$

- 17. Construct a triangle ABC in which BC=7.5 cm, $\angle B = 45^{\circ}$ and AB-AC=2.5 cm.
- **18.** A right triangle ABC with sides 5 cm, 12 cm and 13 cm is revolved about the side 12 cm. Find the volume of the solid so obtained.

Or

9th CBSE Maths

What length of tarpaulin 3 m wide will be required to make conical tent of height 8 m and base radius 6 m? Assume that the extra length of material that will be required for

stitching margins and wastage in cutting is approximately 20 cm. [use $\pi = \frac{22}{7}$]

19. The following table gives the life time of 400 neon lamps:

<u>Life time</u> (in hrs)	Number of lamps
300 - 400	14
400 - 500	56
500 - 600	60
600 - 700	86
700 - 800	74
800 - 900	62
900 - 1000	48

Represent the above information with the help of a histogram.

Or

The mean of 14 values of a data is 23. If one more value is introduced in the data, the mean of 15 values becomes 25. Find the fifteenth value.

Solve for $x: \frac{3x-7}{5} - \frac{x+1}{6} = \frac{2x+2}{12} - 1$.

Or

Give geometric representation of x+3=0 as an equation (i) in one variable (ii) in two variables.

- **21.** A cylinder of maximum volume is cut off from a solid cuboid with square box of side 14 cm and height 20 cm. Find the volume of metal wasted.
- 22. In Fig 3, ABCD is a square, if $\angle PQR = 90^{\circ}$ and PB=QC=DR, prove that QB=RC, PQ=QR, $\angle QPR = 45^{\circ}$.

31. The following values x and y are thought to satisfy a linear equation.

х	1	2
y	1	3

Draw the graph, using the values of x and y. At what points the graph cuts the x – axis and y – axis.

32. In Fig. 6, ABCD is a cyclic quadrilateral in which AB is produced to F and BE||DC. If \angle FBE = 20° and \angle DAB = 95°, find \angle ADC.

- **33.** A cubical block of edge 22 cm is melted into small spherical balls of radius 1 cm. Calculate the number of balls that can be made from it.
- **34.** The following table gives the distribution of students of two sections according to the marks obtained by them.

Secti	on A	Section B		
Marks	Frequency	Marks	Frequency	
0 - 10	3	0 - 10	5	
10 - 20	9	10 - 20	19	
20 - 30	17	20 - 30	15	
30 - 40	12	30 - 40	10	
40 - 50	9	40 - 50	1	

Represent the marks of the students of both the sections on the same graph by two frequency polygons. From the two polygons, compare the performance of the two sections.

31. The following values *x* and *y* are thought to satisfy a linear equation.

х	1	2
y	1	3

Draw the graph, using the values of x and y. At what points the graph cuts the x – axis and y – axis.

32. In Fig. 6, ABCD is a cyclic quadrilateral in which AB is produced to F and BE DC. If ∠FBE = 20° and ∠DAB = 95°, find ∠ADC.

- **33.** A cubical block of edge 22 cm is melted into small spherical balls of radius 1 cm. Calculate the number of balls that can be made from it.
- 34. The following table gives the distribution of students of two sections according to the marks obtained by them.

	Secti	on A	Section B		
1	Marks Frequency		Marks	Frequency	
	0 - 10	3	0 - 10	5	
	10 - 20	9	10 - 20	19	
	20 - 30	17	20 - 30	15	
	30 - 40	12	30 - 40	10	
	40 - 50	9	40 - 50	1	

Represent the marks of the students of both the sections on the same graph by two frequency polygons. From the two polygons, compare the performance of the two sections.

manishbhadoria.blogspot.com