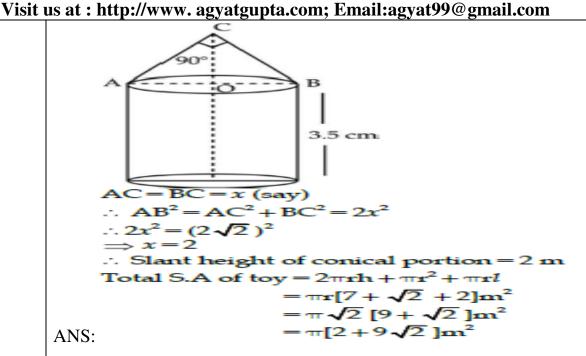
Visit us at : http://www.agyatgupta.com; Email:agyat99@gmail.com

CODE:-AG-TS-11-0036

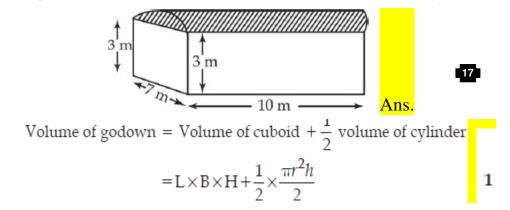
GENERAL INSTRUCTIONS :-

- 1. All questions are compulsory.
- 2. The question paper consists of 34 questions divided into four sections A,B,C and D. Section A comprises of 8 question of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 10 questions of 3 marks each and Section D comprises of 10 questions of 4 marks each.
- 3. Question numbers 1 to 8 in Sections A are multiple choice questions where you are to select one correct option out of the given four.
- 4. There is no overall choice. However, internal choice has been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four mark each. You have to attempt only one lf the alternatives in all such questions.
- 5. Use of calculator is not permitted.
- 6. Please check that this question paper contains 6 printed pages. सामान्य निर्देश :
- 1. सभी प्रश्न अनिवार्य हैं।
- इस प्रश्न पत्र में 34 प्रश्न है, जो चार खण्डों में अ, ब, स व द में विभाजित है। खण्ड अ में 8 प्रश्न हैं और प्रत्येक प्रश्न 1 अंक का है। खण्ड – ब में 6 प्रश्न हैं और प्रत्येक प्रश्न 2 अंको के हैं। खण्ड – स में 10 प्रश्न हैं और प्रत्येक प्रश्न 3 अंको का है। खण्ड – द में 10 प्रश्न हैं और प्रत्येक प्रश्न 4 अंको का है।
- 3. प्रश्न संख्या 1 से 8 बहुविकल्पीय प्रश्न हैं। दिए गए चार विकल्पों में से एक सही

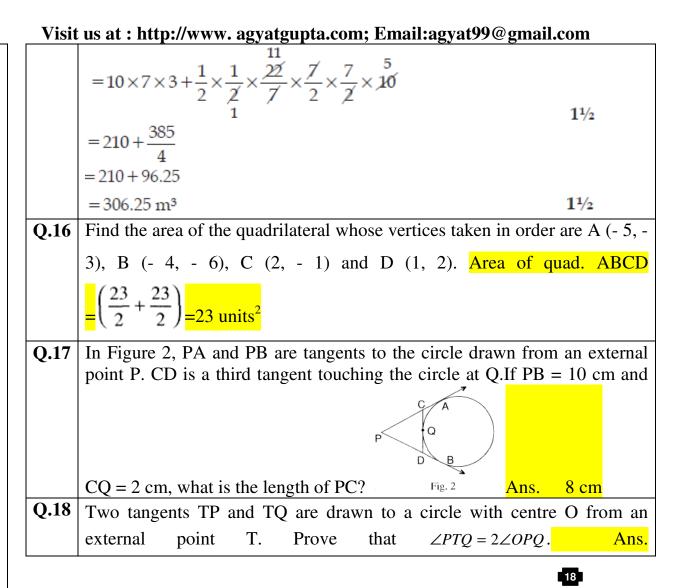

Visit us at : http://www.agyatgupta.com; Email:agyat99@gmail.com

विकल्प चुनें।

- 4. इसमें कोई भी सर्वोपरि विकल्प नहीं है, लेकिन आंतरिक विकल्प 1 प्रश्न 2 अंको में, 3 प्रश्न 3 अंको में और 2 प्रश्न 4 अंको में दिए गए हैं। आप दिए गए विकल्पों में से एक विकल्प का चयन करें।
- 5. कैलकुलेटर का प्रयोग वर्जित है।
- 6. इस प्रश्न–पत्र को पढ़ने के लिऐ 15 मिनिट का समय दिया गया है। इस अवधि के दौरान छात्र केवल प्रश्न–पत्र को पढेंगे और वे उत्तर–पुस्तिका पर कोई उत्तर नहीं लिखेंगें।

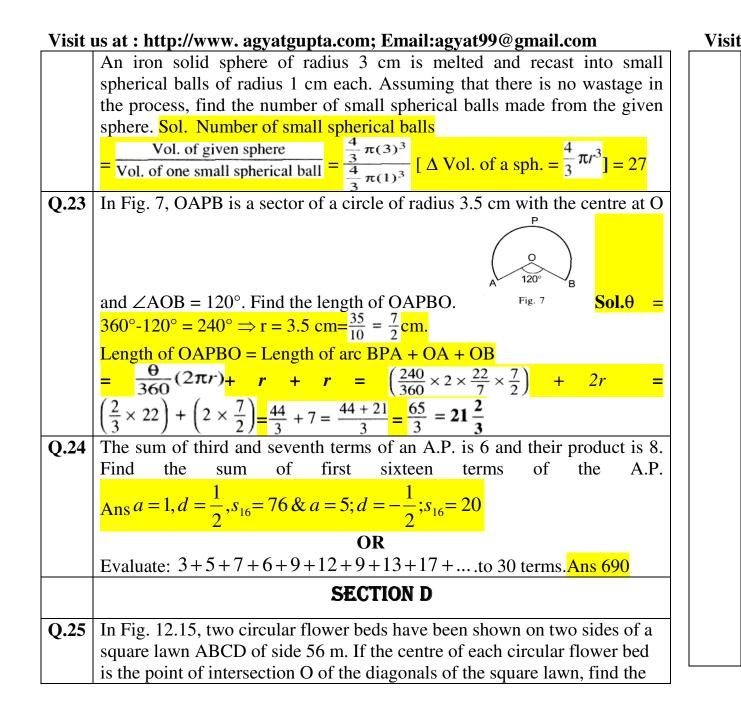

10	1खग।				
Pre-Board Examination 2012 -13					
MĄ	THEMATICS	CLASS X	(SA-2)		
Time : $3 \text{ to } 3\frac{1}{4}$ Hours			Maximum Marks : 90		
SECTION A					
Q.1	If one roots of the equ	ation $2x^2 - 3x + p = 0$ is 3	b, then value of p is		
	(a) -8 (b) 8 (c) -9 (c)	1) 9 <mark>Ans c</mark>	-		
Q.2			ved by the tip of minute hand		
_	in 1 hr is (a) $21\pi cm$ (b)	b) $42\pi cm$ (c) $10.5\pi cm$ (c)	1) $7\pi cm$ Ans b		
Q.3			vation of A as observed from		
	C is (a) 60° (b) 30° (c)	$45^{\circ}(d)$ can not be determined by the determined of the determ	nined <mark>Ans b</mark>		
Q.4	If PQ and PT are tangents to a circle with centre O and radius 5 cm. If PQ				
	= 12, then perimeter of	f quadrilateral PQOT is	Q		
	(a) 24cm (b) 34cm (c)	17cm (d) 20cm Ans b			
Q.5			e is -2, then fourth term of		
	the AP is (a) 3 (b) -3 (c) 4 (d) -9 <mark>Ans d</mark>			


Visit	us at : http://www. agyatgupta.com; Email:agyat99@gmail.com	Visit	t us at : http://www. agyatgupta.com; Email:agyat99@gmail.com
Q.6 Q.7 Q.8 Q.9	Distance of point (1,2), from the mid point of the line segment joining the points (6,8) and (2,4) is (a)4 units (b) 3 units (c) 2 units (d) 5 units Ans d A card is drawn from a pack of 52 playing cards. The probability of getting a face card is (a) 3/13 (b) 4/13 (c) 1/2 (d) 2/3 Ans a A circle is inscribed in a triangle with sides 8, 15 and 17cm. The radius of the circle is (a) 6cm (b) 5cm (c) 4cm (d) 3cm Ans d SECTION B Show that the points $A(a, a), B(-a, -a), C(-a\sqrt{3}, a\sqrt{3})$ form an equilateral triangle. Ans. $AB = \sqrt{(-a-a)^2 + (-a-a)^2} = \sqrt{4a^2 + 4a^2} = 2\sqrt{2} a$ $BC = \sqrt{(-a\sqrt{3} + a)^2 + (a\sqrt{3} + a^2)}$ $= \sqrt{3a^2 + a^2 - 2\sqrt{3}a^2 + 3a^2 + a^2 + 2\sqrt{3}a^2} = \sqrt{8a^2} = 2\sqrt{2} a$ 1 $AC = \sqrt{(-a\sqrt{3} - a)^2 + (a\sqrt{3} - a)^2}$ 1 $= \sqrt{3a^2 + a^2 + 2\sqrt{3}a^2 + 3a^2 + a^2 - 2\sqrt{3}a^2} = \sqrt{8a^2} = 2\sqrt{2} a$ $AB = BC = AC \Rightarrow$ It is an equilateral triangles. 1	Q.11 Q.12 Q.13 Q.14	queen. Ans 10/13 or 1/13 Find the middle terms in the A.P. 20, 16, 12,, (-176). ANS: $a = 20$ $d = -4$ $\frac{1}{2}$ $a_n = a + (n - 1)d$ $-176 = 20 - 4n + 4$ $\frac{1}{2}$ $-200 = -4n$ $\frac{1}{2}$ Middle terms are 25 th and 26 th a25) 1 25 th term = (-7 6) and 26 th term = (-80) Cards each marked with one of the numbers 4,5,620 are placed in a box and mixed thoroughly One card is drawn at random from the box. What is the probability of getting an even prime number ?Ans 0 Write the nature of roots of the quadratic equation $\sqrt{5x^2} - 3\sqrt{6x} - \sqrt{20} = 0$. Ans D = 94 ; Real , un equal , irrational Find the fourth vertex of the rectangle whose three vertices taken in order are (4, 1), (7, 4), (13, -2). Ans (10, -5) SECTION C
Q.10	Justify the statement: "Tossing a coin is a fair way of deciding which team should get the batting First at the beginning of a cricket game." Sol. When we toss a coin, the outcomes head and tail are equally likely. Thus, the result of an individual coin toss is completely unpredictable. Hence both the teams get equal chance to bat first so the given statement is justified. OR One card is drawn from a well shuffled deck of 52 playing cards. Find the probability of getting (i) a non-face card (ii) a black king or a red	Q.15	A toy is in the form of a cylinder of diameter $2\sqrt{2}$ m and height 3.5 m surmounted by cone whose vertical angle is 60°. find total surface area of the top.



OR

A godown is in the form as shown in the figure. The vertical cross-section parallel to the width side of the building is a rectangle of size $7m \times 3m$ mounted by a semicircle of radius 3.5m. The inner measurements of the cubidal portion are $10m \times 7m \times 3m$. Find the volume of the godown.



Target Mathematics by- Agyat Gupta ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

Visit us at : http://www. agyatgupta.com; Email:agyat99@gmail.com	Visit us at : http://www. agyatgupta.com; Email:agyat99@gmail.com	
 Q.10 The angle of elevation of the top of the tower is 60°. Find the 	height of the tower. Sol. In rt. ΔBAD , tan $60^{\circ} = \frac{AB}{AD}$ $\Rightarrow \frac{\sqrt{3}}{\sqrt{3}} = \frac{y}{x}$ $\Rightarrow \sqrt{3}x = y$ $c = \frac{\sqrt{3}}{\sqrt{10}} = \frac{y}{\sqrt{3}}$ $x = \frac{y}{\sqrt{3}}$ In it. ABAC, tan $30^{\circ} = -\frac{AB}{AC} \Rightarrow \frac{1}{\sqrt{3}} = \frac{y}{x+100} \Rightarrow \sqrt{3}y = x + 100 \Rightarrow \sqrt{3}y = x = 100 \Rightarrow \sqrt{3}y = \frac{\sqrt{3}}{\sqrt{3}} = 100$ [From(0] $\Rightarrow \frac{3y - y}{\sqrt{3}} = \frac{100}{1} \Rightarrow 2y = 100\sqrt{3} \Rightarrow y = 50(1.732)$ Height of the tower = 86.6 m Q.21 The altitude of a right triangle is 7cm. less than its base. If the hypotenuse is 13cm, find the other two sides. Ans base = 12cm altitude = 5cm OR Solve for x: $12abx^2 - (9a^2 - 8b^2)x - 6ab = 0$. Ans $\left\{\frac{3a}{4b}, \frac{-2b}{3a}\right\}$ Q.22 A square field and an equilateral triangular park have equal perimeters. If the cost of ploughing the field at the rate of Rs. $5/m^2$ is Rs. 720, find the cost of maintaining the park at the rate of Rs. $10/m^2$. Sol. Let the side of the square be x m Area of the square $= \frac{Total Cost}{Rate per m^2} \Rightarrow x^2 = \frac{720}{5} = 144 \text{ m}^2 \Rightarrow x = \sqrt{144} = +12 \text{ m} (\therefore$ side can not be - ve) \Rightarrow Perimeter of square = $4x = 4$ (12) = 48 m Let side of Δ be y m Perimeter of a Δ = Perimeter of a square (Given) $3y = 48 \therefore y = \frac{48}{3} = 16 \text{ m}$. Area of an equilateral $\Delta = \frac{\sqrt{3}}{4}$ (side) ² = $\frac{\sqrt{3}}{4}$ (y) ² = $\sqrt{3}/4 \times 16 \times 16 = 64\sqrt{3} \text{ m}^2 \Rightarrow Cost of$ maintaining the park @ Rs.10 per m^2 = 64\sqrt{3} \times 10 = 640 \times 1.732 \dots [\because \sqrt{3} = 1.732] = \mathbf{Rs}. 1108.48	
	OR	

us at : http://www. agyatgupta.com; Email:agyat9	9@gmail.com
	B 56m C
sum of the areas of the lawn and the flower beds.	Fig. 12.15
Solution : Area of the square lawn ABCD =	$= 56 \times 56 \text{ m}^2$
Let $OA = OB = x$	metres
So, $x^2 + x^2 = 56^2$	
or, $2x^2 = 56 \times 56$	
or, $x^2 = 28 \times 56$	
area of sector OAB = $\frac{90}{360} \times \pi x^2$ =	$\frac{1}{4} \times \pi x^2$
$=\frac{1}{4}\times\frac{22}{7}\times28\times$	× 56 m ²
area of \triangle OAB = $\frac{1}{4} \times 56 \times 56 \text{ m}^2$ (\angle	AOB = 90°)
area of flower bed AB = $\left(\frac{1}{4} \times \frac{22}{7} \times 28 \times 56 - \right)$	$\frac{1}{4} \times 56 \times 56 \right) m^2$

Visit us at : http://www.agyatgupta.com; Email:agyat99@gmail.com

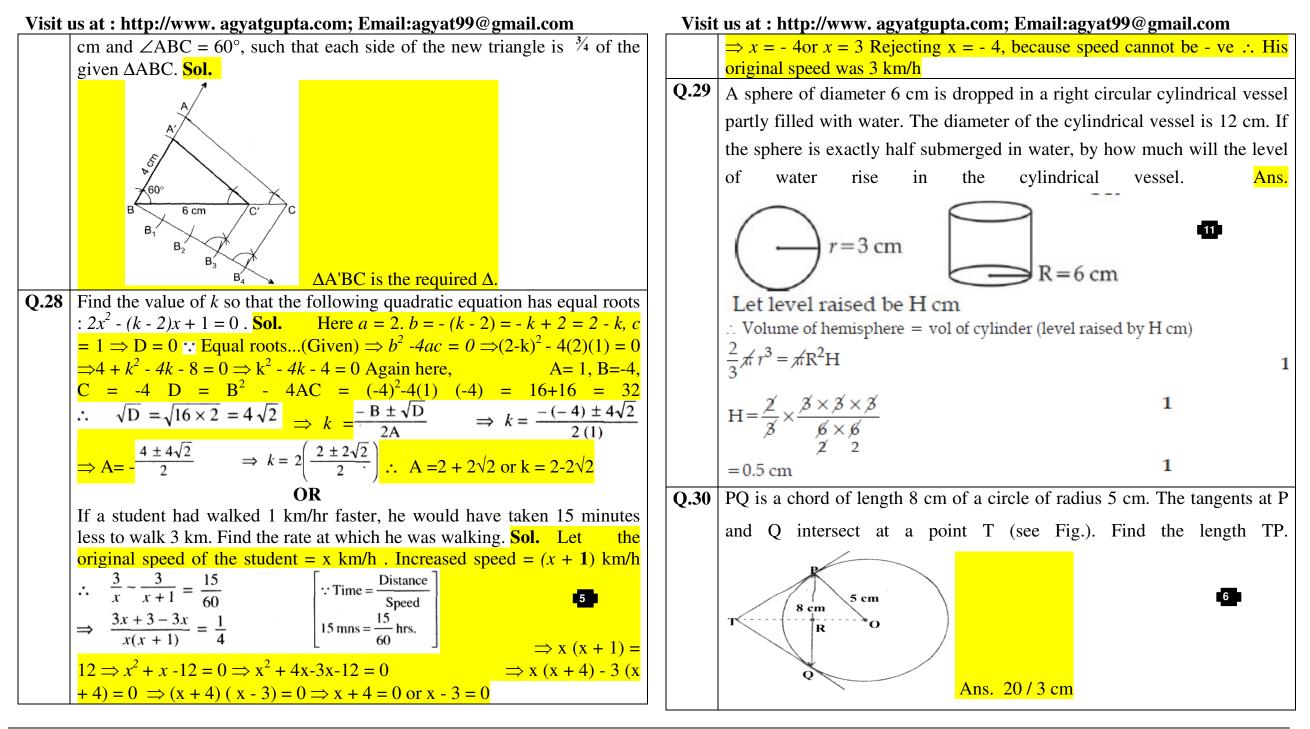
$= \frac{1}{4} \times 28 \times 56 \left(\frac{22}{7} - 2\right) \mathrm{m}^2$
$=\frac{1}{4} \times 28 \times 56 \times \frac{8}{7} \mathrm{m}^2$
Similarly, area of the other flower bed
$= \frac{1}{4} \times 28 \times 56 \times \frac{8}{7} \text{ m}^2$
total area = $\left(56 \times 56 + \frac{1}{4} \times 28 \times 56 \times \frac{8}{7}\right)$
$+\frac{1}{4} \times 28 \times 56 \times \frac{8}{7} m^2$ [From
$= 28 \times 56 \left(2 + \frac{2}{7} + \frac{2}{7}\right) m^2$
$= 28 \times 56 \times \frac{18}{7} \text{ m}^2 = 4032 \text{ m}^2$
Alternative Solution :
Total area = Area of sector OAB + Area of sector ODC + Area of Δ OAD
+ Area of Δ OBC

Visit us at : http://www.agyatgupta.com; Email:agyat99@gmail.com $= \left(\frac{90}{360} \times \frac{22}{7} \times 28 \times 56 + \frac{90}{360} \times \frac{22}{7} \times 28 \times 56\right)$

$$+\frac{1}{4} \times 56 \times 56 + \frac{1}{4} \times 56 \times 56 \right) m^2$$

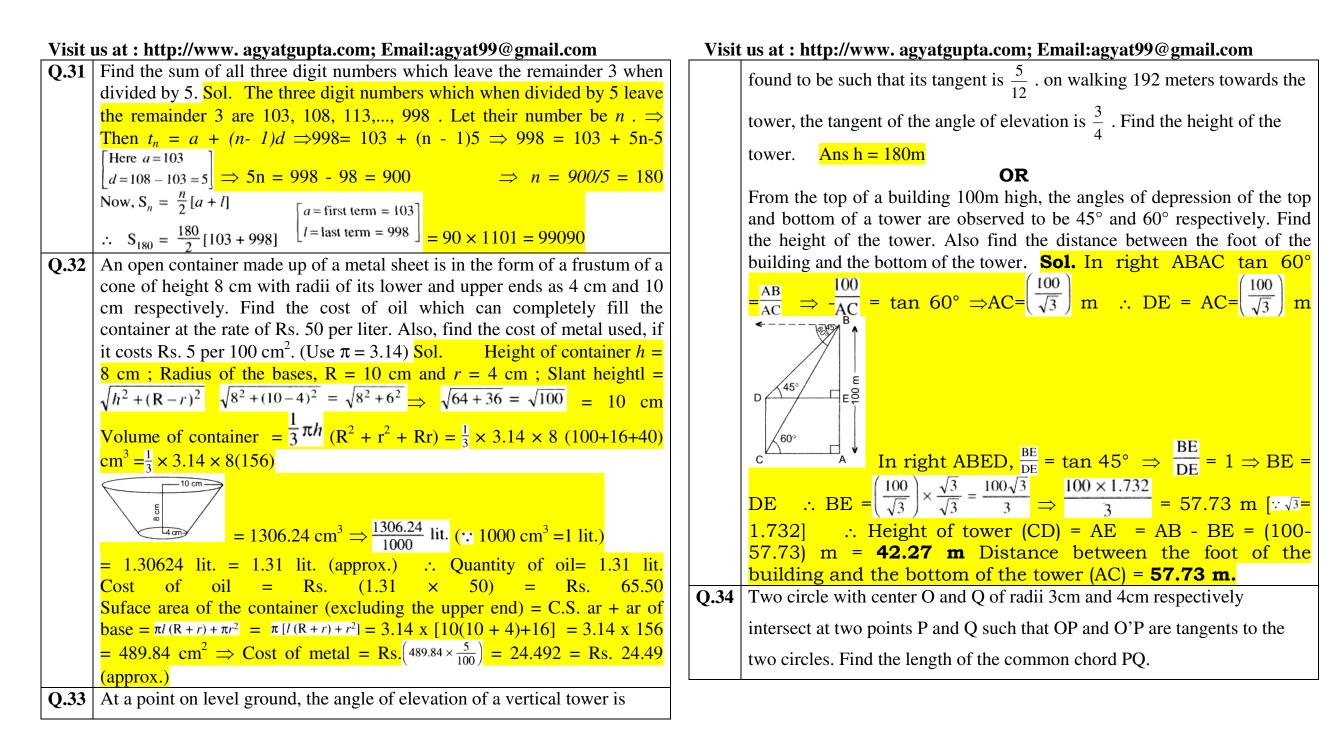
$$= \frac{1}{4} \times 28 \times 56 \left(\frac{22}{7} + \frac{22}{7} + 2 + 2 \right) m^2$$

$$= \frac{7 \times 56}{7} (22 + 22 + 14 + 14) \text{m}^2$$
$$= 56 \times 72 \text{ m}^2 = 4032 \text{ m}^2$$


Q.26 Two friends Surender and Haneef are visiting fruit market in the same week (Monday to Saturday) to parchase fruits. Each is equally likely to visit the market on any one day as on another. What is the probability that both will visit the market on (i) same day (ii) different days. Would you like to eat fruits and why . Ans: (i) When both visit the market on the same day then it may be Monday or Tuesday or Wednesday or Thursday or Friday or Saturday is
$$6 = \frac{1}{6}$$
. (ii) Probability of Surender and Haneet to visit the market on different day $= \frac{5}{6}$. Yes, I would like to suggest to eat fruits

because fruits are useful for good health.

Q.27 Construct a triangle similar to a given $\triangle ABC$ in which AB = 4 cm, BC = 6


 Target Mathematics by- Agyat Gupta ;
 Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

 Ph. :2337615; 4010685®, 2630601(O)
 Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

Target Mathematics by- Agyat Gupta ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

Target Mathematics by- Agyat Gupta ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

Visit us at : http://www.agyatgupta.com; Email:agyat99@gmail.com O'O'P is tangent to a circle with a centre O' and radius 4 cm and OP is tangent to a Circle with Centre O and radius as 3 cm OP⊥O'P ∴ ∠ OPO' = 90° $OO' = \sqrt{4^2 + 3^2} = 5$ cm. Let O'L = x and OL = 5 - xAs we know PQ⊥00' $PL^2 = 16 - x^2 - \dots - (i)$ and also $PL^2 = 3^2 - (5 - x)^2$ -----(ii) $\Rightarrow 16 - x^{2} = 9 - 25 + 10x - x^{2}$ 32 = 10xx = 3.2cm $PL = \sqrt{4^2 - (3.2)^2}$ $=\sqrt{16-10.24}$ $=\sqrt{5.76} = 2.hm$ $= PQ = 2 \times 2.4 = 4.8 cm$ $:: O'L \perp PQ \Rightarrow PQ = 2PL$ (perpendicular from centre to chord bisects chord ANS: ********** WINNER LOSE MUCH MORE OFTEN THAN LOSERS. SO IF YOU KEEP LOSING BUT YOU'RE STILL TRYING, YOU'RE RIGHT ON TRACK. 7

Visit us at : http://www.agyatgupta.com; Email:agyat99@gmail.com

8