

MC SQUARE ACADEMY

(A division of Mandeep educational services pvt ltd.)

M

M :	50	Physics (XI)	TT: 2 hours	
1.	Explai	n following with proper reason.		
	a.	Why blood pressure in humans is greater at the feet than at brain.		
	b.	Water wets the glass surface while mercury does not.	[2]	
2. If Ear		orth were suddenly shrink to ½ of its present radius without change in mass. What is the effect on duration		
	of day	?	[2]	
3.	Explai	n with reason Why:		
	a.	A brass tumbler feels much colder than a wooden tray on a chilly day.		
	b.	The earth without its atmosphere would be inhospitably cold.	[2]	
4.	Derive	the necessary relation for orbital velocity of a satellite and prove that $T^2 \alpha R^3$ using	ng it. [3]	
5.	5. Define molar specific heat capacities at constant volume and pressure. Show that C_P - C_V = R. When			
	have th	neir usual meaning.	[3]	
6. What do you mean by acceleration due to gravity? Derive the necessary relation for variation of			tion of g with depth.	
			[3]	
7.	State S	e Stokes' law and derive the expression for critical velocity in case of a small spherical body falling		
	through	h a viscous fluid like Glycerin.	[3]	
8.	State P	ascal's law. How it can be used in Hydraulic lift.	[3]	
9.	A transverse harmonic wave on a string is described $Y(x,t) = 8\sin(6t + 0.045x + \frac{\pi}{6})$ Where x and y are in			
	cm and	It in sec. The positive direction of x is from left to right.		
a. Is this a travelling or a stationary wave? If it is		Is this a travelling or a stationary wave? If it is travelling, what is the direction of	its propagation?	
	b.	What are its amplitude and frequency?	[3]	
10.	State la	aw of equi-partition of energy. Derive an expression for γ of an ideal gas whose de	egree of freedom is	
	n.		[3]	
11.	A liqui	d drop of diameter 8 mm breaks into 64 droplets of equal size. Calculate the amount	nt of work done in	
	the pro	cess. (The surface tension of the liquid is 0.07 N/m at 20 ^o C)	[3]	
12.	A body of mass m is executing SHM with displacement – time relation y= A sin ωt .Derive relation for			
	velocity and acceleration and draw the graphs to show the variation of displacement, velocity and acceleration			
	as func	ction of time.		

increases to double of its original length?

a. What is the effect on time period of a pendulum of length 1m and time period 2s, when length

MC SQUARE ACADEMY

(A division of Mandeep educational services pvt ltd.)

OR

a) Derive expressions for the kinetic energy and potential energy of a particle of mass m executing SHM of which

Displacement – time relation is given as y= A sinot. Show that total energy is conserved in SHM. Draw the graphs to show the variation of KE and PE as function of displacement.

- b) At what distance from mean position Kinetic energy and potential energy of a body executing SHM is equal in magnitude. [5]
- 13. (a) State Stoke's Law. A metallic ball of radius r and density ρ is falling through a liquid of density η then derives the relation for terminal velocity?
 - (b) In a hydraulic lift the cross section area of smaller and larger pistons are 20cm² and 3m² respectively. What will be the force experienced by a car kept on larger piston when a force of 20 kN applied on smaller side.

OR

- 14. (a) Describe stress- strain relationship for a loaded steel wire and hence explain its various portions briefly.
 - (b) The average depth of Indian Ocean is about 3000 m. calculate the fractional compression, $\Delta V/V$, of water at the bottom of ocean. Given that the bulk modulus of water is $2.2 \times 10^9 N/m^2$. Take g=9.8m/s²

[5]

- 15. Answer
 - a. What is angle of contact? When it is obtuse? When it is acute?
 - b. Show that excess pressure inside a drop of radius r is $P_i P_o = 2S / R$.

OR

State and prove Bernoulli's theorem. Explain any one application of it.

[5]

16. State Hooke's law. Explain Stress – Strain curve of a material when subjected under extended load.

[5]