

Guess Paper - 2014 Class - IX Subject - Mathematics

Section- A

- 1. Decimal representation of 1/9 is (a) $0.\overline{2}$ (b) $0.0\overline{2}$ (c) $0.\overline{2}$ (d) $0.\overline{1}$
- 2. If $p(x) = 4x^2+3x+7/2$, then the value of p(-3/2) is equal to: (a) 2 (b) 4 (c) 6 (d) 8.
- 3. If $x^3 + 3x^2 + 3x + 1$ is divided by x+1, the remainder is: (a) 1 (b) 0 (c) -1 (d) 2.
- 4. The value of p(x) = $3x^2$ -1 at x=- $\frac{1}{\sqrt{3}}$ is (a) -2 (b) 2 (c) -1 (d) 0.
- 5. In the given figure, if $\angle AOC + \angle BOD = 70^{\circ}$, then $\angle COD$ is:(a) 80° (b) 90° (c) 110° (d) 120°
- 6. Two sides of a triangle are 8 cm and 3 cm. Third side of the triangle cannot be : (a) 4 cm (b) 6 cm (c) 5.5 cm (d) 6.5 cm.
- 7. The perimeter of a triangle is 30cm. If its sides are in the ratio 1:3:2 then its smallest side is: (a) 1cm (b) 5cm (c) 10cm (d) 15cm.
- 8. The area of an equilateral triangle whose sides are 6cm. (a) $6\sqrt{3}$ cm² (b) $9\sqrt{3}$ cm² (c) $12\sqrt{3}$ cm² (d) $15\sqrt{3}$ cm².

Section-B

9. Find two irrational numbers between 3 and 4.

10. Simplify
$$\left(\frac{243}{32}\right)^{\frac{-3}{5}}$$

11.If 2a + 3b = 13 and ab = 6, find the value of $8a^3 + 27b^3$.

12.In the given figure, line XY and MN intersect at O. IF $\angle POY = 90^{\circ}$ and a : b = 4:5, find *c*.

- 13. State five postulates of Euclid
- 14. Write the coordinate point (i) below x-axis, lying on y axis at a distance of 5 units (ii) lying on x-axis to the left of origin at a distance of 6 units.

Section-C

15. Simplify
$$\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}} + \frac{\sqrt{12}}{\sqrt{3}-\sqrt{2}}$$

- 16.Represent $\sqrt{4.8}$ on the number line.
- 17. Factorize $a^3 3a^2 + 3a + 7$.

18.In If
$$\left(x^4 + \frac{1}{x^4}\right) = 119$$
 find the value of $\left(x^3 - \frac{1}{x^3}\right)$

OR Factorise
$$(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3$$

19.In the given figure, OP bisects \angle BOC and OQ bisects \angle AOC, show that \angle $POO = 90^{0}$

- 20.Prove that medians bisecting the equal sides of an isosceles triangle are also equal. **OR** If two parallel lines are intersected by a transversal, show that the bisectors of any pair of alternate interior angles are parallel.
- 21.In the given figure, OB and OC are bisectors of $\angle B$ and $\angle C$, find x and y.

22.In Figure two straight lines PQ and RS intersect each other at O. If \angle POT = 75°, find the values of a,b and c.

23.In the given figure, ABCD is a quadrilateral in which AB || DC and P is the midpoint of BC. On producing, AP and DC meet at Q.

Prove that

(i)
$$AB = CQ$$
, (ii) $DQ = DC + AB$.

24. The sides of a triangle are in the ration of 13:14:15 and its perimeter is 84 cm. Find the area of the triangle. Also find the altitude of the triangle corresponding to the longest side.

Section-D

$$\frac{\sqrt{2} + \sqrt{3}}{3\sqrt{2} - 2\sqrt{3}} = a - b\sqrt{6}$$

25.If the Find the values of a and b

OR
$$\frac{1}{12 - \sqrt{3}}$$
If $x = \frac{2 - \sqrt{3}}{2 - \sqrt{3}}$, find the value of $x^3 - 2x^2 - 7x + 5$

26. Find the values of a and b if $2\sqrt{6} - \sqrt{5} = a + b \sqrt{30}$.

27.If $f(x) = x^4 - 2x^3 + 3x^2 - ax + b$ is divided by (x-1) and (x+1) the remainders are 5 and 19. Determine the remainder when f(x) is divided by (x-2).

OR Evaluate 103×107 and factorize $1-p^6$.

- 28.Using the factor theorem, factorize the polynomial $x^4 + 2x^3 13x^2 14x + 24$.
- 29. Factorize: $8x^4 + 2x^2 1$.

30. Side BC of a triangle ABC is produced to a point D as shown in figure. The bisector of $\angle A$ meets BC at L. Prove that $\angle ABC + \angle ACD = 2\angle ALC$.

31. Prove that side opposite to greater angle is the longer.

32.If O is any point in the interior of $\triangle ABC$. Prove that $OA+OB+OC>\frac{1}{2}$ (AB+BC+CA).

33.ABC is a triangle, in which altitudes BE and CF to sides AC and AB are equal. Show that $\triangle ABE\cong \triangle ACF$. Also show that $\triangle ABC$ is an isosceles triangle. **OR** .

In the given figure AB = AD, AC=AE and \angle BAD = \angle CAE. Prove that BC= DE. 34.Plot the following (-1,0) (1,0) (1,2) (-1,2) . Find the perimeter of the figure so formed.

Paper Submitted By:

Name Lalan kumar

Email one.lalansir@gmail.com

Phone No. 9304012213