

UNIVERSAL EDUCATION CENTRE

RAISINGHNAGAR-335051 JAYANT: 94145-37474 MATHS- 12th

SECTION

(1 Mark each)

- Q.1. Let A= $\{2, 3, 4, 5, 6, 7, 8, 9\}$. Let R be the relation on A defined by $\{(x,y): x \in A, y \in A \text{ and } x \text{ divides } y\}$. Find domain and range of R.
- Q.2. If a matrix has 8 elements, what are the possible orders it can have?
- Q.3. Evaluate (a) $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ $\begin{bmatrix} 2&3&4 \end{bmatrix}$ and (b) $\begin{bmatrix} 1&-2\\2&3 \end{bmatrix}$ $\begin{bmatrix} 1&2&3\\2&3&1 \end{bmatrix}$
- Q.4. If a line makes angle 90° , 60° and 30° with the positive direction of x, y and z respectively, find its direction consines.
- Q.5. Find the principal value of $\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$.
- Q.6. Check the continuity of the function f(x) = 2x + 3 at x = 1.
- Q.7. Evaluate : $\int cos^4 x \, dx$.
- Q.8. Solve the differential equation: $\frac{dy}{dx} = 1 + x + y + xy$.
- Q.9. Find a matrix X such that 2A + B + X = 0, where $A = \begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix}$; $B = \begin{bmatrix} 3 & -2 \\ 1 & 5 \end{bmatrix}$.
- Q.10. Using differentials, find the approximate value of $\sqrt{26}$.

SECTION B

(4 Marks each)

- Q.11. Let $f: \{2, 3, 4, 5\} \rightarrow \{3, 4, 5, 9\}$ and $g: \{3, 4, 5, 9\} \rightarrow \{7, 11, 15\}$ be functions defined as f(2)=3, f(3)=4f(4) = f(5) = 5 and g(3) = g(4) = 7 and g(5) = g(9) = 11. Find go f.
- Q.12. Evaluate : $\int \frac{1+\tan x}{x+\log \sec x} dx$. or Evaluate : $\int \frac{dx}{\sqrt{3-x+x^2}} dx$.
- Q.13. A die is rolled. If the outcome is an even number, what is the probability that it is a prime number?
- Q.14. Three bags contain 7 white, 8 red, 9 white, 6 red and 5 white, 7 red balls respectively. One ball, at random, is drawn from the bag. Find the probability that all of them are of the same colour.
- Q.15. If $x^p y^q = (x+y)^{p+q}$, prove that $\frac{dy}{dx} = \frac{y}{x}$.
- Q.16. Solve the differential equation : $(x+2y^2)\frac{dy}{dx} = y$, given that when x = 2, y = 1.
- Q.17. Find the projection of $\vec{a} = 2\hat{\imath} \hat{\jmath} + \hat{k}$ on $\vec{b} = \hat{\imath} 2\hat{\jmath} + \hat{k}$.
- Q.18. Find the differentiation of $\sqrt{\sin x}$ by first principle.

For the function $f(x) = -2x^2 - 9x^2 - 12x + 1$, find the interval(s):

- (a) in which f(x) is increasing
- (b) in which f(x) is decreasing.
- Q.19. Express $\tan^{-1}\left(\frac{\cos x}{1-\sin x}\right)$ in the simplest form where $-\frac{\pi}{2} < x < \frac{\pi}{2}$.

Prove that : $\tan^{-1}x + \tan^{-1}\frac{2x}{1-x^2} = \tan^{-1}(\frac{3x-x^3}{1-3x^2}), \quad |x| < \frac{1}{\sqrt{3}}$.

- Q.20. Using properties of determinants, prove that : $\begin{vmatrix} 1 & a & a^3 \\ 1 & b & b^3 \\ 1 & c & c^3 \end{vmatrix} = (a-b)(b-c)(c-a)(a+b+c).$ Q.21. Evaluate : $\int_{1}^{2x+1} \frac{dx}{\sqrt{x^2+4x+3}} \, dx \, . \qquad or \qquad Evaluate : \int_{1}^{2} \left(\frac{x-1}{x^2}\right) e^x \, dx.$
- Q.21. Evaluate : $\int \frac{2x+1}{\sqrt{x^2+4x+2}} dx$.

Q.22. Find the direction cosines of the line passing through the two points (-2, 4, -5) and (1, 2, 3).

SECTION C

(6 Marks each)

- Q.23. Find λ so that the four points with position vectors $-6\hat{\imath}+3\hat{\jmath}+2\hat{k}$, $3\hat{\imath}+\lambda\hat{\jmath}+4\hat{k}$, and $5\hat{\imath}+7\hat{\jmath}+3\hat{k}$ and $-13\hat{\imath}+17\hat{\imath}-\hat{k}$ are coplanar.
- Q.24. An unbiased coin is tossed 6 times. Find using Binomial distribution, the probability of getting at Least 5 heads.

Orl

A company has two plants to manufacture scooters. Plant -1 manufactures 70% of the scooters and Plant-2 manufactures 30%. At Plant-1, 80% of the scooters are rated of standard quality and at Plant-2, 90% of the scooters are rated of standard quality. A scooter is chosen at random and is found to be of standard quality. Find the probability that it has come from Plant-2.

Q.25. Using matrices, solve the following system of equations for x, y and z:

x+2y-3z=6; 3x+2y-2z=3; 2x-y+z=2

- Q.26. A window is in the form of a rectangle surmounted by a semi-circular opening. If the perimeter of the window is 20m, find the dimensions of the window so that the maximum possible light is admitted through the whole opening.
- Q.27. Using properties of integrals, evaluate: $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) dx$, where $f(x) = \sin|x| + \cos|x|$.
- Q.28. Find the vector equation of the plane passing through the intersection of the planes $\vec{r} \cdot (2\hat{i} 7\hat{j} + 4\hat{k}) = 3$

And \vec{r} . $(3\hat{i} - 5\hat{j} + 4\hat{k}) + 11 = 0$ and passing through the point (-2, 1, 3).

Q.29. A producer has 30 and 17 units of labour and capital respectively which he can use to produce two types of goods X and Y. To produce one unit of X, 2 units of labour and 3 units of capital are required. Similarly 3 units of labour and 1 unit of capital is required to produce one unit of Y. If X and Y are priced at Rs. 100 and Rs. 120 per unit respectively, how should the producer use his resources to maximise the total revenue? Solve the problem, graphically.

ALL THE BEST