Biotechnology

Biotechnology may defined as the use of microorganism or plant or animals or their part to generate product and services useful to human beings/the process involves genetic engineering

The products-bt crops, vaccines, rDNA vaccines etc

Principles of Biotechnology

- > Two principles
 - [1] Genetic Engineering
 - [2] the tech that grow and facillate growth of microbs/Host
- Genetic Eng [def-tech to alter sequence of genetic material, so change phenotype] includes
- 1. Creation of r DNA
- 2. Gene cloning
- 3. Gene transfer

Tools of Biotechnology/Recombinent DNA technology

- The tools of are
 - 1. Restriction Enzyme
 - 2. Ligase
 - 3. Vector
 - 4. Host

> Restriction enzymes are

- 1. They serve as the tools or cutting DNA molecule at palindromic site
- 2. This is class of nuclease enzyme
- 3. May be endo or exo
- 4. Linn & Arber 1963 two enzyme from coli that can restrict the growth of phage
- 5. First was Hind II
- 6. Functioning depends up on spl site called Recognisation site that is **palindromic nucleotide sequence in the DNA GAATTC**
- 7. They cuts at PNS, called cleavage, and leaves G and C called **sticky ends**

- 8. The above forms H bond with their complementary counterpart
- 9. The cut peaces are separated by **Gel electrophoresis**
- 10.Nomenclature [First word from the genus+ Two word from species +the site where they attack e.g. **Eco HYRI**]

> LIGASE

- 1. an enzyme commonly used in molecular biology <u>laboratories</u> to join together <u>DNA</u> fragments.
- 2. **Also called synthetases**, because they are used to <u>synthesize</u> new molecules.
- 3. Example DNA ligase

> VECTORES

- A vector is a DNA molecule which have the self replication ability in host cell [e.g.phage and plasmid in bacterial cell] or into which DNA fragment to be cloned **DNA insert**
- 2. A good vector must have
 - a. Autonomous replication
 - b. Small size
 - c. Easy to isolate and purify
 - d. Easy to introduced in host cell
 - e. Easy linking to foreign DNA

- 3. Features that are required to facillate cloning
 - a. **Origin of Replication,ori,**the sequence from where the replication starts and any pcs of DNA when linked to this seq. can self replicate in host cell. [ii]responsible for the **copy number**
 - b. Selectable Marker is a gene which helps in identification of those host cell which have vector[Transformant] and elimination of non transformants. Thus provide selected transformation[the process by which a DNA pc introduced to hot bacterium]mostly antibiotic resistence gene, as tetracycline or galactoside, are good marker
 - c. Cloning sites/Recognisation site./.identification of site
 - the site to which an alien DNA will linked
 - may and may be more than one.
 - The ligation is carried out at a restriction site present in one of the two antibiotic resistance genes
 - E.g. we can ligate alien DNA to at restriction site BamH I site of tetracycline resistance gene in vector pBR322.
 - The r plasmid will lose antibiotic resistance due to alien DNA
 - Then it placed in ampicillin plate
 - Then again it placed in tetracycline medium
 - Those which grows in ampicillin and tetracycline medium are non transformants whilst which grows only in ampicilline are transformants
 - Thus antibiotic gene helps in selecting transformants so called marker
 - Another method is based on color-r DNA is inserted into the coddding sequence of beta galactoside which result inactivation of enzyme[insertional inactivation] produce blue color are non transformants whilst which gives no color

Process of R DNA tech

Isolation of Genetic Material

- 1. Break the cell to release DNA[with RNA proteinsetc]
- 2. Cell is broken down by treating the cell by Lysozyme, Cellulose, Chitinase
- 3. Purified
 - RNA removed by treating ribonuclease
 - Proteins removed by treating Protease
 - And so on, Finally purified by C₂H₅OH

- Clevage at specific site[by Nuclease]
- Isolation of the desired DNA [GENE] fragment by agrose gel electrophoresis
- Amplification of gene by PCR
 - 1. Amplification mean making of multiple copies of desired gene
 - 2. PCR invented by K mullis noble for Medicine
 - 3. PCR involves
 - Denaturation[by heating]
 - Primer annealing
 - Primers are chemically synthesized peaces of DNA which are complimentary to the desired DNA
 - o Two sets of primers are used
 - DNA Pol II is the enzyme used to making copies of DNA by the use of DNA and its primers
 - Extension of primers

- Ligation of DNA fragment to vector by ligase which result r DNA
- > Transfering of r DNA to Host
 - The r DNA can't insert to host cell because it is hydrophobic in nature and hydrophobic molecule pass through cell membrane by ion selective method

- Hence to make Bacterialcompetent to take up DNA, Bacteria is treated with Calcium
- o **Now** r DNA can inserted to bacteria at 42°C
- o However, now a days,r DNA can injected directly by gene gun or microinjection
 - Gene gun is a suitable method for plant cell where cells are bombard with high velocity coated DNA{coated by Tungsten or gold}

Microinjection

gene gun

Culture of host in medium

- o The host is cultured in suitable medium
- The gene cloning process occur
- Obtaining the foreign product [desired] e.g. vaccine by bioreactors
- Downstream [separation and purification, clinical trials] process of the product as a finished product ready for marketing

Bioreactors

- This is a special type of vessel in which raw material is converted into desired product by microbes.
- This provide optimum growth conditions
- Out of them stirred bioreactor are most common-
 - The stirrer facillate the mixing and oxygen availability through the reactor

- This have following part
 - Agitation system
 - Oxygen[air] delivery system
 - Reactor tank
 - Thermal jacket etc.

> Gel electrophoresis

- o Separation of charged molecules in an electric field.
- Nucleic acids have 1 charged phosphate (- charge) per nucleotide.
- o Separation based on length: longer molecules move slower.
- o Done in a gel matrix to stabilize: agarose or acrylamide.
- Stain with EtBr intercalates between DNA bases and fluoresces orange.
- Run alongside standards of known sizes to get lengths

opp Sitapur Eye Hospital Shahajahanpur, U.P.

Some other important point

PLASMID

- Extrachromosomal, double-stranded, usually circular, supercoiled DNA molecules
- · Found in many bacterial species
- Replicate and are inherited independently of the bacterial chromosome
- Maintain copy number in cell through an origin of replication (replicon)
- Usually have genes coding for enzymes that provide <u>benefits for the host bacterium</u>, eg. antibiotic resistance

COPY NUMBER

- The copy number reflects the average number of copies of a certain plasmid inside a host cell. The higher the copy number, the more efficient the plasmid is at replicating itself.
- Researchers using plasmids as vectors usually choose high copy number plasmids as their vectors since you can get a large number of plasmids from relatively fewer cells in less time.

cDNA

- In genetics, complementary DNA (cDNA) is <u>DNA</u> synthesized from a messenger RNA
 (<u>mRNA</u>) template in a reaction catalysed by the enzymes <u>reverse transcriptase</u> and <u>DNA</u>
 <u>polymerase</u>.
- cDNA is often used to clone eukaryotic genes in prokaryotes.
- When scientists want to express a specific <u>protein</u> in a cell that does not normally<u>express</u> that protein they will transfer the cDNA that codes for the protein to the recipient cell.
- cDNA is also produced by <u>retroviruses</u> (such as <u>HIV-1</u>, <u>HIV-2</u>, <u>Simian Immunodeficiency</u> <u>Virus</u>, etc.) which is integrated into its host's genome where it creates a <u>provirus</u>

Ti plasmid

- A Ti or tumour inducing <u>plasmid</u> is a circular plasmid that often, but not always, is a part
 of the genetic equipment that <u>Agrobacterium tumefaciens</u> and <u>Agrobacterium</u>
 rhizogenes use to transduce its genetic material to plants.
- The Ti plasmid is lost when *Agrobacterium*is grown above 28°C. Such cured bacteria do not induce crown galls, i.e. they become avirulent
- The plasmid has 196 <u>genes</u> that code for 195 <u>proteins</u>. There is no one structural <u>RNA</u>. The plasmid is 206,479 <u>nucleotides</u> long, the <u>GC content</u> is 56% and 81% of the material is coding genes. There are nopseudogenes.

ASSIGNMENT-1

- 1. Each nuclease enzyme cut DNA at its specific site. Name them?
- 2. What are the technique included under biotechnology?
- 3. Write a note on gel electrophoresis?
- 4. Define plasmid?
- 5. Explain with refrence to PCR
 - a. A specific enzyme helps in amplification in PCR. Name the bacterium from which it isisolated?
 - b. Explain its use in moleculer diagnosis?

ASSIGNMENT-2

- 1. What is the significance of palindromic sequence?
- 2. Name the enzyme that cuts DNA sequence at A and G
- 3. Write digramatically the three sequence of PCR?
- 4. Why a cell must be competent to introduce rDNA?
- 5. Represent digramatically the steps in the formation of r DNA by EcoRI?

ASSIGNMENT-3

- 1. A plasmid and a DNA sequence in a cell need to be cut for producing rDNA. What name is given to the enzyme that will work as moleculer scissors?
- 2. Mention the function of DNA polymerase and DNA ligase?
- 3. Which of the following will produce sticky ends-

GGC GCC

G AATTC CTTAA G

- 4. DNA cannot pass through cell membrane. why?
- 5. Mention three ways to introduce rDNA into Host cell?

ASSIGNMENT-4

- 1. Define biolistic?
- 2. Describe the isolation of DNA for r DNA?
- 3. Define elution?
- 4. Draw stirred bioreactor?
- 5. Define plasmid? Mention the role of vectores in r DNA tech?

ASSIGNMENT-5

- 1. Show the stepd of rDNA only by diagram?
- 2. Name the technique used to seprateDNA fragments in lab?

- 3. Give the chemical structure of nucleotide?
- 4. Explain the importence of *ori,am^R,and rop in pBR322?*
- 5. Explain selectable markers?
- 6. Explain cloning sites?
- 7. What is the role of lysozymes, chitinase etc?
- 8. One or few sites are preferred in a vector as recognisation site. Why?
- 9. Define
 - a. Electroporation
 - b. Palindromes
 - c. Transgenic
 - d. Bioconversion
 - e. R protein
 - f. Microinjection
 - g. Translation

REFRENCES

- 1. Biotechnology, B.D.Singh, B.H.U.,India
- 2. Faye's Recombination Technology, Blackwell, Australia
- 3. NCERT biotechnology XI and XII
- 4. Image courtesy -Google image
- 5. Assignment sources
 - a. Meritnation.com
 - **b.** Mycbseguide.com
 - c. Toppersarena.com
 - **d.** Kvsbangluru.co.in
 - e. Du.ac.in