

MATHEMATICS / गणित

Class – X / कक्षा – X

Time allowed : 3 hours निर्धारित समय : 3 घण्टे Maximum Marks : ୭ अधिकतम अंक : ๑

General Instructions:

- 1. All questions are compulsory.
- The question paper consists of 34 questions divided into four sections A, B, C and D. Section A comprises of 8 questions of 1 mark each, Section B comprises of 6 questions of 2 marks each. Section C comprises of 10 questions of 3 marks each and Section D comprises of 10 questions of 4 marks each.
- 3. Question numbers 1 to 8 in Section A are multiple choice questions where you are to select on correct option out of the given four.
- 4. There is no overall choice. However, internal choice has been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four marks each. You have to attempt only one of the alternatives in all such questions.
- 5. Use of calculator is not permitted.
- 6. An additional 15 minutes time has been allotted to read this question paper only.

<u>सामान्य निर्देश :</u>

- (i) सभी प्रश्न अनिवार्य हैं।
- (ii) इस प्रश्न पत्र में 34 प्रश्न हैं, जिन्हें चार खण्डों अ, ब, स तथा द में बांटा गया है। खण्ड-अ में 8 प्रश्न हैं जिनमें प्रत्येक में 7 प्रत्येक 1 अंक का है, खण्ड-ब में 6 प्रश्न हैं जिनमें प्रत्येक के 2 अंक हैं, खण्ड-स में 10 प्रश्न हैं जिनमें प्रत्येक के 3 अंक है तथा खण्ड-द में10 प्रश्न हैं जिनमें प्रत्येक के 4 अंक हैं।
- (iii) खण्ड-अ में प्रश्न संख्या 1 से 8 तक बहुविकल्पीय प्रश्न हैं जहां आपको चार विकल्पों में से एक सही विकल्प चुनना है।
- (iv) इस प्रश्न पत्र में कोई भी सर्वोपरि विकल्प नहीं है, लेकिन आंतरिक विकल्प 2 अंकों के एक प्रश्न में, 3 अंकों के
 3 प्रश्नों में और 4 अंकों के 2 प्रश्नों में दिए गए हैं। प्रत्येक प्रश्न में एक विकल्प का चयन करें।
- (v) कैलकुलेटर का प्रयोग वर्जित है।

Section-A

Question numbers 1 to $\frac{1}{8}$ carry one mark each. For each questions, four alternative choices have been provided of which only one is correct. You have to select the correct choice.

								UEC(New Delhi))Classes Online Enganging Students Empowering Parents
1.	A pa	air of irrational n	umbers	whose produc	t is a rat	ional number i	s: Visit	t: www.uecj4u.hpage.co.in
	(A) अपरि	√16, √4 मेय संख्याओं का वह	(B) इ युग्म जि	√5 <i>,</i> √2 ानका गृणन एक पा	(C) रिमेय संख	√3 <i>,</i> √27 या है, हैं :	(D)	√ <u>36</u> , √2
	(A)	$\sqrt{16}, \sqrt{4}$	(B)	$\sqrt{5}, \sqrt{2}$	(C)	$\sqrt{3},\sqrt{27}$	(D)	$\sqrt{36}, \sqrt{2}$
2.	If α,	, β are zeroes of β	polyno	$\operatorname{mial} f(x) = x^2 - \frac{1}{2} - 1$	+ px +	q then polynor	nial hav	ing $\frac{1}{\alpha}$ and $\frac{1}{\beta}$
	as it	s zeroes is :						
	(A)	$x^2 + qx + p$	(B)	$x^2 - px + q$	(C)	$qx^2 + px + 1$	(D)	$px^2 + qx + 1$
	यदि त	α, β बहुपद $f(x) = x^2$	$p^{2} + px + px$	q के शून्यक हों तो	$\frac{1}{\alpha}$ तथा	$rac{1}{eta}$ शून्यक के लिये	बहुपद होग	Π:
	(A)	$x^2 + qx + p$	(B)	$x^2 - px + q$	(C)	$qx^2 + px + 1$	(D)	$px^2 + qx + 1$
3.	If the OD=	e diagonals AC a = OB.OC, then th	nd BD e quad	of a quadrilater rilateral is a :	ral ABC	D intersect at C) such th	at AO.
	(A)	parallelogram	(B)	trapezium	(C)	rectangle	(D)	square
	यदि प	रक चतुर्भुज ABCD	के विक	र्ण AC तथा BD बि	मंदु O पर `	काटते हैं तथा AO	. OD=0	DB.OC है, तो चतुर्भुज है:
	(A)	समांतर चतुर्भुज	(B)	समलंब	(C)	आयत	(D)	वर्ग
4.	Whie	ch of the followi	ng is nc	ot defined ?				
	(A)	$\cos 0^{\circ}$	(B)	tan 45°	(C)	sec 90°	(D)	sin 90°
	निम्न	में से कौन सा परिभा	षित नहीं	हे?				
	(A)	cos 0º	(B)	tan 45°	(C)	sec 90°	(D)	sin 90°
5.	(4 ta	$n^2 A - 4 \sec^2 A$) is	s equal	to :				
	(A)	-1	(B)	-4	(C)	0	(D)	4
	(4 ta: (A)	$n^2 A - 4 \sec^2 A$) \overline{a} -1	गराबर है (B)	: -4	(C)	0	(D) 4	4

6. If $\sin \theta = \cos \theta$, then the value of $\csc \theta$ is :

(A) 2 (B) 1 (C)

(D)

 $\sqrt{2}$

 $\frac{2}{\sqrt{3}}$

UEC (New Delhi) Classes Online Enganging Students Empowering Parents Visit: www.ueci4u.hpage.co.in

यदि sin θ = cos θ हो, तो cosec θ का मान है :

- (A) 2 (B) 1 (C) $\frac{2}{\sqrt{3}}$ (D) $\sqrt{2}$
- 7. Rational number $\frac{p}{q}$, $q\neq 0$ will be terminating decimal if the prime factorisation of q is of the form (m and n are non negative integers) :

(A) 2^m×3ⁿ
 (B) 2^m×5ⁿ
 (C) 3^m×5ⁿ
 (D) 3^m×7ⁿ
 परिमेय संख्या p/q, q≠0 का दशमलव प्रसार सांत होगा यदि q के अभाज्य गुणनखण्ड का रूप होगा (m तथा n ऋणेतर पूर्णांक है) :

(A) $2^m \times 3^n$ (B) $2^m \times 5^n$ (C) $3^m \times 5^n$ (D) $3^m \times 7^n$

8.

The graphical representation of the pair of equations x + 2y - 4 = 0 and 2x + 4y - 12 = 0 is :

				Section-B
(C)	संगामी	रेखायें	(D)	सभी A, B, C
(A)	प्रतिच्छेदी	रेखायें	(B)	समानान्तर रेखायें
रैखिक	समीकरण		$12 = 0\overline{3}$	का ग्राफीय आकार होगा :
(C)	Coincid	ent lines	(D)	All the above
(A)	Intersec	ting lines	(B)	Parallel lines

Question numbers 9 to 14 carry two marks each.

9. The value of tan1°.tan2°.tan3°..... tan89° is :

tan1°.tan2°.tan3°..... tan89° का मान है।

10.

Which measure of central tendency is given by the *x* co-ordinate of the point of intersection of the more than Ogive and less than Ogive.

निम्न केन्द्रीय प्रवृति के मापक में 'से अधिक प्रकार' तोरण तथा 'से कम प्रकार तोरण' के x अक्ष के प्रतिच्छेदन द्वारा दर्शाते है :

11.Find the LCM of 336 and 54 by prime factorisation method.अभाज्य गुणनखंड द्वारा 336 तथा 54 का LCM (ल.स.व.) ज्ञात करो।

- 12. Find the zeroes of the quadratic polynomial $4x^2 7$. $4x^2 - 7$ द्विघात बहुपद के शून्यक ज्ञात करो।
- 13. For what value of k, the pair of equations kx + 3y = k 3, 12x + ky = k has unique solution. k के किस मान के लिए समीकरण युग्म kx + 3y = k - 3, 12x + ky = k का अद्वितीय हल होगा ?

14. Prove that
$$\sqrt{\frac{1 + \sin A}{1 - \sin A}} = \sec A + \tan A$$

सिद्ध करो $\sqrt{\frac{1 + \sin A}{1 - \sin A}} = \sec A + \tan A$

OR/ अथवा

If sin (A + B) = cos (A – B) = $\frac{\sqrt{3}}{2}$ and A, B (A > B) are acute angles, find the values of A and B.

यदि sin (A + B) = cos (A – B) =
$$\frac{\sqrt{3}}{2}$$
 है, जहाँ A, B (A > B) न्यून कोण है। A और B के मान ज्ञात कीजिए।
Section-C (खण्ड – स)

Questions numbers 15 to 24 carry three marks each.

15. In the figure given below, ABC and DBC are two triangles on the same base BC. If AD

D

निम्न आकृति में, एक ही आधार QR पर दो त्रिभुज ABC और DBC बने हुए हैं। यदि AD, BC को O बिन्दु पर प्रतिच्छेद करे, तो दर्शाइए कि :

16. In a trapezium ABCD, AB is parallel to CD and AB = 2CD. If area of $\triangle AOB = 84 \text{ cm}^2$, find the area of $\triangle COD$.

समचतुर्भुज ABCD में AB और CD समान्तर हैं तथा AB=2CD हैं। यदि क्षे. ΔAOB=84 से.मी.² हो, तो क्षे. ΔCOD ज्ञात कीजिए।

17. Construct the frequency distribution table for the given data :

Marks	Less than					
Obtained	10	20	30	40	50	60
No. of Students	14	22	37	58	67	75

निम्नलिखित आँकडों का बारंबारता बंटन सारणी बनाइए :

प्राप्तांक	10 से कम	20 से कम	30 से कम	40 से कम	50 से कम	60 से कम
विद्यार्थियों की संख्या	14	22	37	58	67	75

18. Find the mode of the given data :

Class	0 - 20	20 - 40	40 - 60	60 - 80
Frequency	15	6	18	10

निम्न आँकडों का बहुलक ज्ञात कीजिए।

वर्ग	0 - 20	20 - 40	40 - 60	60 - 80
बारंबारता	15	6	18	10

19. There are 156, 208 and 260 students in Groups A, B, C respectively. Buses are to be hired to take them for a field trip. Find the minimum number of buses to be hired if the same number of students should be accommodated in each bus.

तीन समूहों A, B तथा C में क्रमश: 156, 208 तथा 260 विद्यार्थी है। उन्हें बाहर ले जाने के लिए बसों को किराये पर लेना हैं। यदि प्रत्येक बस में एक समान विद्यार्थी ले जाये जाने हैं, तो बसों की कम से कम संख्या ज्ञात कीजिए।

20. Prove that $2\sqrt{3} - 7$ is an irrational.

सिद्ध कीजिए कि $2\sqrt{3} - 7$ एक अपरिमेय संख्या है।

वा UEC(New Delhi) Classes Online Enganging Students Empowering Parents Visit: www.uecj4u.hpage.co.in

Prove that $\sqrt{3} + \sqrt{5}$ is an irrational number.

सिद्ध कोजिए कि $\sqrt{3} + \sqrt{5}$ एक अपरिमेय संख्या है।

21. Solve for *x* and *y* : $mx - ny = m^2 + n^2$; x - y = 2n

x तथा y के लिये हल कोजिए : $mx - ny = m^2 + n^2$; x - y = 2n

OR/ अथवा

Seven times a two digit number is equal to four times the number obtained by reversing the order of digits. If the sum of both the digits is 9, find the number.

एक दो अंको की संख्या का सात गुना, उस संख्या के अंकों को पलटने पर प्राप्त संख्या के चार गुने के बराबर है। यदि दोनों अंकों का योग 9 है, तो संख्या ज्ञात कीजिए।

- 22. Obtain all other zeroes of $x^4 + 5x^3 2x^2 40x 48$, if two of its zeroes are $2\sqrt{2}$ and $-2\sqrt{2}$. बहुपद $x^4 + 5x^3 - 2x^2 - 40x - 48$ के दो शून्यक क्रमश: $2\sqrt{2}$ तथा $-2\sqrt{2}$ हैं। बहुपद के अन्य सभी शून्यक ज्ञात कीजिए।
- Prove that :sec²θ + cot² (90 θ) = 2 cosec² (90 θ) 1.
 सिद्ध कोजिए : sec²θ + cot² (90 θ) = 2 cosec² (90 θ) 1.
- 24. If $\cos\theta \sin\theta = \sqrt{2} \sin\theta$, prove that $\cos\theta + \sin\theta = \sqrt{2} \cos\theta$. यदि $\cos\theta - \sin\theta = \sqrt{2} \sin\theta$ है, तो सिद्ध कोजिए कि $\cos\theta + \sin\theta = \sqrt{2} \cos\theta$.

Section-D

In figure above, $AB \|PQ\|$ CD, AB = x units, CD = y units and PQ = z units, prove that,

आकृति में AB||PQ||CD, AB = x इकाई, CD = y इकाई तथा PQ = z इकाई है, तो सिद्ध कीजिए कि

 $\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$

26.

In the given figure PS, SQ, PT and TR are 4 cm, 1 cm, 6 cm and 1.5 cm respectively, prove that ST||QR. Also, find the ratio of $\frac{ar(\Delta PST)}{ar(trap QRTS)}$

दी गई आकृति में PS, SQ, PT तथा TR की लंबाईयाँ क्रमशः 4 cm, 1 cm, 6 cm तथा 1.5 cm हैं। सिद्ध

27. Find the mode of the following data :

Marks	Number of Students
Less than 10	3
Less than 20	8
Less than 30	24
Less than 40	36
Less than 50	49
Less than 60	69
Less than 70	75
Less than 80	80

निम्नलिखित आँकड़ों का बहुलक ज्ञात कीजिए :

अंक	विद्यार्थियों की संख्या
10 से कम	3
20 से कम	8
30 से कम	24
40 से कम	36
50 से कम	49
60 से कम	69
70 से कम	75
80 से कम	80

OR/ अथवा

The mean of the following frequency distribution is 52. Find the missing frequency.

C. I.	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80
Frequency	5	3	4	f	2	6	13

निम्न बारंबारता बंटन का माध्य 52 है, तो अज्ञात बारंबारता ज्ञात कीजिये।

वर्ग अन्तराल	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80
बारंबारता	5	3	4	f	2	6	13

28. 200 surnames were randomly picked up from a local telephone directory and the frequency distribution of the number of letters in English alphabets in the surnames was obtained as follows.

No. of letters	1-5	5-10	10-15	15-20	20-25
No. of surnames	20	60	80	32	8

Find the median.

एक स्थानीय टैलीफोन डाइरैक्टरी में से यादृच्छया 200 कुलनाम लिए गए तथा इन नामों में अग्रेंजी के अक्षरों का

अक्षरों की संख्या :	1-5	5-10	10-15	15-20	20-25
कुलनामों की संख्या :	20	60	80	32	8

माध्यक ज्ञात कोजिए।

29. If two of the zeroes of the polynomial $f(x) = 5x^4 - 5x^3 - 33x^2 + 3x + 18$ are $+\sqrt{\frac{3}{5}}$ and $-\sqrt{\frac{3}{5}}$ find the other two zeroes. \overline{x} and $\overline{x} = 5x^4 - 5x^3 - 33x^2 + 3x + 18$ and $\sqrt{\frac{3}{5}}$ for $\overline{x} = -\sqrt{\frac{3}{5}}$ for

कीजिए।

30. In the given figure, \triangle ABC is right angled at C and DE \perp AB. Prove that \triangle ABC ~ \triangle ADE and find the lengths of AE and DE.

दी हुई आकृति में, ABC एक समकोण त्रिभुज है, जिसका कोण C समकोण है तथा DE⊥AB है। सिद्ध कीजिए कि ΔABC ~ ΔADE है तथा AE और DE की लंबाइयाँ ज्ञात कीजिए।

OR/ अथवा

Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

सिद्ध कीजिए कि दो समरूप त्रिभुजों के क्षेत्रफलों का अनुपात उनकी संगत भुजाओं के वर्गों के अनुपात के बराबर होता है।

31. Prove that

 $\frac{\tan\theta}{1-\cot\theta} + \frac{\cot\theta}{1-\tan\theta} = \sec\theta\csc\theta + 1$

सिद्ध कोजिए कि :

$$\frac{\tan\theta}{1-\cot\theta} + \frac{\cot\theta}{1-\tan\theta} = \sec\theta\csc\theta + 1$$

OR/ अथवा

If
$$p = \csc\theta + \cot\theta$$
 then show that $\frac{p^2 - 1}{p^2 + 1} = \cos\theta$.

यदि p = cosecθ + cotθ है, तो सिद्ध कीजिए कि
$$\frac{p^2 - 1}{p^2 + 1} = cos\theta$$

32.

$$\begin{aligned} \text{Evaluate} &: \frac{\sec^2(90^\circ - \theta) - \cot^2\theta}{2(\sin^2 25^\circ + \sin^2 65^\circ)} + \frac{2\sin^2 30^\circ \tan^2 32^\circ \cdot \tan^2 58^\circ}{3(\sec^2 33 - \cot^2 57)} \\ \text{मान ज्ञात कोजिए} &: \frac{\sec^2(90^\circ - \theta) - \cot^2\theta}{2(\sin^2 25^\circ + \sin^2 65^\circ)} + \frac{2\sin^2 30^\circ \tan^2 32^\circ \cdot \tan^2 58^\circ}{3(\sec^2 33 - \cot^2 57)} \end{aligned}$$

33. Find graphically the solution of the equations :

Find the co-ordinates of the points where the two lines meet the *y*-axis.

ग्राफ द्वारा निम्न समीकरणों का हल ज्ञात कीजिए।

x + 2y = 8; y - x = 1

उन बिन्दुओं के निर्देशांक ज्ञात कीजिए जहाँ पर यह रेखाएँ y-अक्ष को मिलती हैं।

34. The following table gives the height of 40 trees in meters :

Height in meters :	0-8	8-16	16-24	24-32	32-40	40-48
No. of trees :	3	7	13	9	8	2

Change the above distribution to less than type distribution and draw its ogive. Hence obtain the median value.

वृक्ष की ऊँ.	0-8	8-16	16-24	24-32	32-40	40 - 48
(मी.):						
वृक्षों की	3	7	13	9	8	2
संख्या :						

निम्नलिखित में 40 वृक्षों की ऊँचाई (मी. में) दी गई है :