MATHEMATICS CLASS XII

Time: 3 hours General Instructions:

MM: 100

- 1. All questions are compulsory.
- 2. The question paper consists of 26 questions divided into three sections A, B and C. Section A comprises 6 questions of one mark each, Section B comprises 13 questions of four marks each and Section C comprises 7 questions of six marks each.
- 3. All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the questions.
- 4. There is no overall choice. However, internal choice has been provided in some questions of four marks and six marks each. You have to attempt only one of the alternatives in all such questions.
- 5. Use of calculator is not permitted. You may ask for logarithmic tables, if required.

Section-A				
Q1	If $A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}$, then show that $ 2A = 4 A $.	1		
Q2	If $f(x) = a^x$. x^a find $f'(x)$.	1		
Q3	Evaluate: $\int \frac{dx}{\sqrt{x+a} + \sqrt{x+b}}$.	1		
Q4	The position vectors of points A, B, C and D are \vec{a} , \vec{b} , $2\vec{a}+3\vec{b}$ and $\vec{a}-2\vec{b}$. Express $\overrightarrow{\text{DB}}$ and	1		
	\overrightarrow{AC} in terms of \vec{a} and \vec{b} .			
Q5	Show that the vectors $3\hat{i} + j + 2\hat{k}$ and $\hat{i} - j - \hat{k}$ are perpendicular.	1		
Q6	A line makes an angle of $\frac{\pi}{4}$ with each of x-axis and y-axis. Find the angle between this line	1		
	and the z-axis.			
Section-B				
Q7	Evaluate: $\tan^{-1} 1 + \tan^{-1} 2 + \tan^{-1} 3$	4		
	OR			
	Solve the equation: $\tan^{-1}(x+1) + \tan^{-1}(x-1) = \tan^{-1}\left(\frac{6}{17}\right)$			
Q8	Using the properties of determinants, prove that	4		
	$ \alpha \beta \gamma $			
	$\begin{vmatrix} \alpha^2 & \beta^2 & \gamma^2 \end{vmatrix} = (\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)(\alpha + \beta + \gamma)$			
	$\begin{vmatrix} \alpha & \beta & \gamma \\ \alpha^2 & \beta^2 & \gamma^2 \\ \beta + \gamma & \gamma + \alpha & \beta + \alpha \end{vmatrix} = (\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)(\alpha + \beta + \gamma)$			
Q9	If $y = \tan^{-1}\left[\frac{\sqrt{a} - \sqrt{x}}{1 + \sqrt{ax}}\right]$. Find $\frac{dy}{dx}$.	4		

	Find the interval in which the function	
Q10	$f(x) = \sin\left(2x + \frac{\pi}{4}\right), 0 \le x \le 2\pi$ is	4
011	(i) increasing (ii) decreasing	4
Q11	(<i>i</i>) increasing (<i>ii</i>) decreasing Evaluate: $\int \frac{x^2 + 1}{x^4 + x^2 + 1} dx$	4
	$x^{4} + x^{2} + 1$ OR	
	Evaluate : $\int \sin^{-1} \left(\frac{2x}{1+x^2} \right) dx$	
Q12		4
	Show that $y = Ax + \frac{B}{x}$ is a solution of the differential equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - y = 0$	
Q13	Solve the differential equation	4
	$x^{2}dy + y(x+y)dx = 0$ given that $y = 1$ when $x = 1$.	
Q14	Find the angle between the line	4
	$\frac{x-2}{3} = \frac{y+1}{-1} = \frac{z-3}{2}$ and the plane $3x + 4y + z + 5 = 0$	
	3 -1 2	
	Find the equation of the plane containing the line of intersection of the planes	
	x+2y+3z-4=0 and $2x+y-z+5=0$ and which is perpendicular to the plane	
	5x + 3y + 6z + 8 = 0.	
Q15	Find a vector whose magnitude is 3 units and which is perpendicular to the vectors \vec{a} and \vec{b}	4
	where $\vec{a} = 3\hat{i} + j - 4\hat{k}$ and $\vec{b} = 6\hat{i} + 5j - 2\hat{k}$.	
Q16	An urn contains 10 white and 3 black balls. Another urn contains 3 white and 5 black balls.	4
	Two balls are drawn from the first urn and put into the second urn and then a ball is drawn	
Q17	from the second urn. Find the probability that it is a white ball. $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$	4
X ¹ '	Let A = $\begin{bmatrix} 0 & -\tan\left(\frac{\theta}{2}\right) \\ \tan\left(\frac{\theta}{2}\right) & 0 \end{bmatrix}$. Show that I+A=(I-A) $\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$.	
	Let $A = \begin{bmatrix} 2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
	$\left[\tan\left(\frac{\theta}{2}\right) 0\right] \left[\sin\theta \cos\theta\right]$	
Q18	If $f(x)$, defined by the following is continuous at $x = 0$, find the values of a, b, c;	4
	$\int \frac{\sin(a+1)x + \sin x}{x}, if x < 0$	
	$ \int (x) = \int c, \qquad ij x = 0 $	
	$\frac{\sqrt{x+bx^2}-\sqrt{x}}{if} i < x > 0$	
	$f(x) = \begin{cases} \frac{\sin(a+1)x + \sin x}{x}, & \text{if } x < 0\\ c, & \text{if } x = 0\\ \frac{\sqrt{x+bx^2} - \sqrt{x}}{bx^{\frac{3}{2}}}, & \text{if } x > 0 \end{cases}$	
Q19	In a legislative assembly election, a political group hired a public relations firm to promote its	4
	candidate in 3 ways: telephone, house calls and letters. The cost per contact (in paise) is given	
	by matrix A as	

S.K.Batra (Professional Maths Teacher) Contact:8586000650,01244477900

	Cost per Contact	
	$\begin{bmatrix} 40 \end{bmatrix}$ Telephone	
	A= 100 House call	
	50 Letter	
	The number of contacts of each type made in two cities X and Y is given by	
	Telephone House call Letter	
	$\mathbf{B} = \begin{bmatrix} 1000 & 500 & 5000 \end{bmatrix} \rightarrow \mathbf{X}$	
	$3000 1000 1000 \rightarrow Y$	
	Find the total amount spent by the group in two cities X and Y, using matrix algebra.	
	Section-C	
Q20		6
_	let \oplus be a binary operation on Q defined by $a \oplus b = \frac{ab}{4}$. Show that the operation \oplus is	
	commutative as well as associative. Also find ts identity element and inverse of an element.	
	Evaluate: $\int (x+1)\sqrt{1-x-x^2} dx$.	
Q21	OR	6
x	$\frac{\pi}{2}$ and μ	-
	Evaluate the definite integral $\int_{0}^{\pi/2} \frac{\cos x}{1 + \sin x + \cos x} dx$	
	$\int_{0}^{3} 1 + \sin x + \cos x$	
Q22	In a test an examinee either guesses or copies or knows the answer to a multiple choice	6
Q22	1	0
	question with four choices. The probability that he makes a guess is $\frac{1}{3}$ and the probability that	
	he copies the answer is $\frac{1}{\epsilon}$. The probability that his answer is correct given that he copied it is	
	6	
	$\frac{1}{2}$. Find the probability that he he knows the answer to the question given that h correctly	
	8 answered it	
Q23	Show that the height of a right circular cylinder of maximum volume that can be inscribed in	6
	a sphere of radius R is $\frac{2R}{\sqrt{3}}$.	
Q24	Using the definite integrals, find the area of the region bounded by the triangle whose vertices	6
	are (-1, 1), (0, 5) and (3, 2).	
Q25	Prove that the lines \vec{r} and \vec{r} and \vec{r} and \vec{r} and \vec{r}	6
	$\vec{r} = \hat{i} + 2j + 3\hat{k} + \lambda(2\hat{i} + 3j + 4\hat{k})$ and $\vec{r} = 2\hat{i} + 3j + 4\hat{k} + \mu(3\hat{i} + 4j + 5\hat{k})$ intersect. Also	
026	find the vector equation of the plane in which they lie.	6
Q26	A diet for a sick person must contain atleast 4000 units of vitamins, 50 units of minerals and 1400 calories. Two foods X and Y are available at a cost of Rs 4 and Rs 3 per unit	6
	respectively. One unit of food X contains 200 units of vitamins, 1 units of minerals and 40	
	calories while one unit of food Y contains 100 units of vitamins, 2 units of minerals and 40	
	calories. Find what combination of foods X and Y should be used to have least cost, satisfy	
	the requirements.	

Answers

Q2:
$$a^{x}x^{a-1}(a + x\log a)$$
 Q3: $\frac{2}{3(a-b)} \Big[(x+a)^{3/2} - (x+b)^{3/2} \Big] + c$ **Q4**: $\overrightarrow{DB} = 3\vec{b} - \vec{a}$ and $\overrightarrow{AC} = \vec{a} + 3\vec{b}$
Q6: $\frac{\pi}{2}$ **Q7**: Part(a): π or Part(b): $x = \frac{1}{3}$ **Q9**: $\frac{-1}{2\sqrt{x}(1+x)}$ **Q10**: Part(a): Increasing : $\Big[0, \frac{\pi}{8} \Big]$ and
 $\Big[\frac{5\pi}{8}, 2\pi \Big]$, Decreasing : $\Big[\frac{\pi}{8}, \frac{5\pi}{8} \Big]$ OR Part(b): 7.04 **Q11**: Part(a): $\frac{1}{\sqrt{3}} \tan^{-1} \Big(\frac{x^2 - 1}{x\sqrt{3}} \Big) + c$ OR Part(b):
 $2x \tan^{-1} x - \log(1+x^2) + c$ **Q13**: $y + 2x = 3x^2y$ **Q14**: Part(a): $\sin^{-1} \Big(\frac{7}{2\sqrt{91}} \Big)$ OR Part(b):
 $51x + 15y - 50z + 173 = 0$ **Q15**: Part(a) $2\hat{i} - 2j + \hat{k}$ OR $-2\hat{i} + 2j - \hat{k}$
Q16: $\frac{59}{130}$ **Q18**: $a = \frac{-3}{2}, c = \frac{1}{2}, b \in \mathbb{R} - \{0\}$ **Q19**: X : Rs 3400; **Y** = Rs 2700
Q20: Identity element is 4. **Q21**: Part(a): $-\frac{1}{3}(1-x-x^2)^{3/2} + \frac{2x+1}{8}\sqrt{1-x+x^2} + \frac{5}{16}\sin^{-1}(\frac{2x+1}{\sqrt{5}}) + c$
Or Part(b): $\frac{\pi}{4} - \frac{1}{2} \log 2$ **Q22**: $\frac{24}{29}$ **Q24**: $\frac{15}{2}$ sq units
Q25: $\frac{3\sqrt{2}}{2}$ units **Q26**: X : 5 units, Y : 30 units