MATHEMATICS CLASS XII

Time: 3 hours MM: 100

General Instructions:

- 1. All questions are compulsory.
- 2. The question paper consists of **26** questions divided into three sections **A**, **B** and **C**. Section **A** comprises **6** questions of **one mark** each, Section **B** comprises **13** questions of **four marks** each and Section **C** comprises **7** questions of **six marks** each.
- 3. All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the questions.
- 4. There is no overall choice. However, internal choice has been provided in 4 questions of four marks each and 2 questions of six marks each. You have to attempt only one of the alternatives in all such questions.
- 5. Use of calculator is not permitted. You may ask for logarithmic tables, if required.

Section-A

	Section-A	
Q1	If $A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}$, then show that $ 2A = 4 A $.	1
Q2	If $f(x) = a^x$. x^a find $f'(x)$.	1
Q3	Evaluate: $\int \frac{dx}{\sqrt{x+a} + \sqrt{x+b}}$.	1
Q4	The position vectors of points A, B, C and D are \vec{a} , \vec{b} , $2\vec{a} + 3\vec{b}$ and $\vec{a} - 2\vec{b}$. Express \overrightarrow{DB} and \overrightarrow{AC} in terms of \vec{a} and \vec{b} .	1
Q5	Show that the vectors $3\hat{i} + j + 2\hat{k}$ and $\hat{i} - j - \hat{k}$ are perpendicular.	1
Q6	A line makes an angle of $\frac{\pi}{4}$ with each of x-axis and y-axis. Find the angle between this line and the z-axis.	1

Section-B

Q7	Evaluate: $\tan^{-1} 1 + \tan^{-1} 2 + \tan^{-1} 3$	4
	OR	
	Solve the equation: $\tan^{-1}(x+1) + \tan^{-1}(x-1) = \tan^{-1}\left(\frac{6}{17}\right)$	
Q8	Using the properties of determinants, prove that	4
	$\begin{vmatrix} \alpha & \beta & \gamma \\ \alpha^2 & \beta^2 & \gamma^2 \\ \beta + \alpha & \gamma + \alpha & \alpha + \beta \end{vmatrix} = (\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)(\alpha + \beta + \gamma)$	
Q9	If $y = \tan^{-1} \left[\frac{\sqrt{a} - \sqrt{x}}{1 + \sqrt{ax}} \right]$. Find $\frac{dy}{dx}$.	4

Mr S.K. Batra

	Find the interval in which the function	
Q10	$f(x) = \sin\left(2x + \frac{\pi}{4}\right), 0 \le x \le 2\pi \text{ is}$	4
	(i) increasing (ii) decreasing	
Q11	Evaluate: $\int \frac{x^2 + 1}{x^4 + x^2 + 1} dx$	4
	OR	
	Evaluate: $\int \sin\left(\frac{2x}{1+x^2}\right) dx$,
Q12	Show that $y = Ax + \frac{B}{x}$ is a solution of the differential equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - y = 0$	4
Q13	Solve the differential equation $x^2 dy + y(x+y)dx = 0$ given that $y = 1$ when $x = 1$.	4
Q14	Find the angle between the line	4
	$\frac{x-2}{3} = \frac{y+1}{-1} = \frac{z-3}{2}$ and the plane $3x + 4y + z + 5 = 0$	
	OR Find the equation of the plane containing the line of intersection of the planes	
	x + 2y + 3z - 4 = 0 and $2x + y - z + 5 = 0$ and which is perpendicular to the plane	
	5x + 3y + 6z + 8 = 0.	
Q15	Find a vector whose magnitude is 3 units and which is perpendicular to the vectors \vec{a} and \vec{b}	4
	where $\vec{a} = 3\hat{i} + j - 4\hat{k}$ and $\vec{b} = 6\hat{i} + 5j - 2\hat{k}$.	
Q16	An urn contains 10 white and 3 black balls. Another urn contains 3 white and 5 black balls.	4
	Two balls are drawn from the first urn and put into the second urn and then a ball is drawn	
017	from the second urn. Find the probability that it is a white ball.	4
Q17	$0 - \tan\left(\frac{\theta}{2}\right)$	4
	Let $A = \begin{bmatrix} 0 & -\tan(\frac{\pi}{2}) \\ \tan(\frac{\pi}{2}) \end{bmatrix}$. Show that $I + A = (I - A) \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$.	
	$\tan\left(\frac{\theta}{\theta}\right) = 0$ $\tan^{2}\theta + \cos^{2}\theta = 0$	
Q18	Discuss the continuity of the following function at $x = 0$;	4
	$\int x^4 + 2x^3 + x^2$	
	$f(x) = \begin{cases} \frac{1}{\tan^{-1} x}, & x \neq 0 \end{cases}$	
	$f(x) = \begin{cases} \frac{x^4 + 2x^3 + x^2}{\tan^{-1} x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$	
Q19	Find the equations of tangents to the curve $y = x^3 + 2x + 6$ which are perpendicular to the	4
	line $x + 14y + 4 = 0$.	
	OR	
	If the tangent to the curve $y = x3 + ax + b$ at P (1,-6) is parallel to the line $y - x = 5$, find the	
	values of a and b.	

Section-C

	Section-C	
Q20	let \oplus be a binary operation on Q defined by $a \oplus b = \frac{ab}{4}$. Show that the operation \oplus is	6
	commutative as well as associative. Also find is identity element and inverse of an element.	
Q21	Evaluate: $\int (x+1)\sqrt{1-x-x^2} dx$.	6
	OR	
	Evaluate the definite integral $\int_{0}^{\pi/2} \frac{\cos x}{1 + \sin x + \cos x} dx$	
Q22	In a test an examinee either guesses or copies or knows the answer to a multiple choice	6
	questionwith four choices. The probability that he makes a guess is $\frac{1}{3}$ and the probability that he copies the answer is $\frac{1}{6}$. The probability that his answer is correct given that he copied it is	
	$\frac{1}{8}$. Find the probability that he he knows the answer to the question given that h correctly	
022	answered it.	-
Q23	Show that the height of a right circular cylinder that can be inscribed in a sphere of radius R is $\frac{2R}{\sqrt{3}}$.	6
	A window is in the form of a rectangle surmounted by a semi-circular opening. The total	
	perimeter of the window is 10 m. Find the dimension of the window to admit maximum light through the whole opening.	
Q24	Using the definite integrals, find the area of the region bounded by the triangle whose vertices are (-1, 1), (0, 5) and (3, 2).	6
Q25	Prove that the lines $\vec{r} = \hat{i} + 2j + \hat{k} + \lambda(2\hat{i} + 3j + 4\hat{k})$ and $\vec{r} = 2\hat{i} + 3j + 4\hat{k} + \mu(3\hat{i} + 4j + 5\hat{k})$ intersect. Also find the vector equation of the plane in which they lie.	6
Q26	A diet for a sick person must contain atleast 4000 units of vitamins, 50 units of minerals and 1400 calories. Two foods X and Y are available at a cost of Rs 4 and Rs 3 per unit respectively. One unit of food X contains 200 units of vitamins, 1 units of minerals and 40 calories while one unit of food Y contains 100 units of vitamins, 2 units of minerals and 40 calories. Find what combination of foods X and Y should be used to have least cost, satisfy the requirements.	6

Answers

Q2: $a^x x^{a-1} (a + x \log a)$ **Q3**: $\frac{2}{3(a-b)} \left[(x+a)^{3/2} - (x+b)^{3/2} \right] + c$ **Q4**: $\overrightarrow{DB} = 3\vec{b} - \vec{a}$ and $\overrightarrow{DC} = \vec{a} + 3\vec{b}$

Q6: $\frac{\pi}{2}$ **Q7**: Part(a): π or Part(b): $x = \frac{1}{3}$ **Q9**: $\frac{-1}{2\sqrt{x}(1+x)}$ **Q10**: Part(a): Increasing: $\left(0, \frac{3\pi}{8}\right)$ and

 $\left(\frac{5\pi}{8}, 2\pi\right)$, Decreasing: $\left(\frac{3\pi}{8}, \frac{5\pi}{8}\right)$ OR Part(b): 7.04 **Q11**: Part(a): $\frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{x^2 - 1}{x\sqrt{3}}\right) + c$ OR Part(b):

 $2x \tan^{-1} x - \log(1+x^2) + c$ **Q13:** $y + 2x = 3x^2y$ **Q14:** Part(a): $\sin^{-1} \left(\frac{7}{2\sqrt{91}}\right)$ OR Part(b):

51x + 15y - 50z + 173 = 0 **Q15**: Part(a) $2\hat{i} - 2j + \hat{k}$ OR $-2\hat{i} + 2j - \hat{k}$

Q16: $\frac{59}{130}$ **Q18**: Continuous **Q19**: 14x - y - 10 = 0; 14x - y + 22 = 0 OR (2,-4); $\left(\frac{-2}{3}, \frac{4}{27}\right)$

Q20: Identity element is 4. **Q21**: Part(a): $-\frac{1}{3}(1-x-x^2)^{3/2} + \frac{2x+1}{8}\sqrt{1-x+x^2} + \frac{5}{16}\sin^{-1}\left(\frac{2x+1}{\sqrt{5}}\right) + c$

Or Part(b): $\frac{\pi}{4} - \frac{1}{2} \log 2$ **Q22**: $\frac{59}{130}$ **Q23**: Length= $\frac{10}{4+\pi}$ meters,

breadth= $\frac{20}{4+\pi}$ meters= Diameter of semi-circular portion.

Q24: $\frac{15}{2}$ sq units **Q25**: $\frac{3\sqrt{2}}{2}$ units **Q26**: X : 5 units, Y : 30 units

Prepared By:

Mr S.K. Batra

Contact: 8586000650,

0124-4477900

Mr S.K. Batra

Contact: 8586000650, 0124-4477900