HALF SYLLABUS TEST – 03 B

A Compilation By O. P. Gupta [M. +91-9650 350 480]

Max. Marks: 60 Time Allowed: 2 Hours

Section A

- Q01. An edge of variable cube is increasing at the rate of 3cm/s. How fast is the volume of the cube increasing when the edge is 10cm long?
- **Q02.** If '^' is a binary operation which is defined as "a ^ b = $a^2 + 2$ b" then, determine the value of 3 ^ 2.

Q03. Evaluate :
$$\int \frac{e^{5 \log x} - e^{4 \log x}}{e^{3 \log x} - e^{2 \log x}} dx$$
.

Q04. Write the value of
$$\int_{-\pi/2}^{\pi/2} \log \left| \frac{2 - \sin x}{2 + \sin x} \right| dx$$
.

Q05. Write the integrating factor of differential equation : $(1 + y^2) dx = (\tan^{-1} y - x) dy$.

Q06. If
$$x \in R$$
, $0 \le x \le \frac{\pi}{2}$, and $\begin{vmatrix} 2\sin x & -1 \\ 1 & \sin x \end{vmatrix} = \begin{vmatrix} 3 & 0 \\ -4 & \sin x \end{vmatrix}$, then find the values of x.

Q07. For what value of
$$k$$
, $f(x) = \begin{cases} \frac{\log(1+ax) - \log(1-bx)}{x}, & \text{if } x \neq 0 \\ k, & \text{if } x = 0 \end{cases}$ is continuous at $x = 0$?

Q08. If $x = a$ ($t - \sin t$), $y = a$ ($1 - \cos t$), find $\frac{d^2y}{dx^2}$ at $t = \frac{\pi}{2}$.

OR Differentiate $x^{x \cos x} + \frac{x^2 + 1}{x^2 - 1}$ w.r.t. x .

Q08. If
$$x = a$$
 $(t - \sin t)$, $y = a$ $(1 - \cos t)$, find $\frac{d^2y}{dx^2}$ at $t = \frac{\pi}{2}$. **OR** Differentiate $x^{x \cos x} + \frac{x^2 + 1}{x^2 - 1}$ w.r.t. x.

Q09. Evaluate
$$\int_{1}^{3} (x^2 + x) dx$$
 as the limit of a sum. Q10. Evaluate : $\int \frac{\cos x}{(1 + \sin x)(2 + \sin x)} dx$.

Q10. Evaluate:
$$\int \frac{\cos x}{(1+\sin x)(2+\sin x)} dx$$

Q09. Evaluate
$$\int_{1}^{1} (x^{2} + x) dx$$
 as the limit of a sum. Q10. Evaluate: \int
Q11. Let $f: \mathbb{N} \to \mathbb{N}$ be defined as $f(n) = \begin{cases} \frac{n+1}{2}, & \text{when } n \text{ is odd} \\ \frac{n}{2}, & \text{when } n \text{ is even} \end{cases}$

State whether the function f is bijective. Justify your answer.

Q12. Solve:
$$\sin^{-1}(1-x)-2\sin^{-1}x=\frac{\pi}{2}$$
.

Section C

Q13. Prove that the volume of largest cone that can be inscribed in a sphere of radius R is $\frac{8}{27}$ of the volume of the sphere.

Q14. Evaluate:
$$\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx$$
.

Q14. Evaluate :
$$\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx$$
. OR Evaluate :
$$\int_{0}^{\pi} \frac{x}{a^{2} \cos^{2} x + b^{2} \sin^{2} x} dx$$
.

Q15. Using properties of determinants, prove that :
$$\begin{vmatrix} (y+z)^2 & xy & zx \\ xy & (x+z)^2 & yz \\ xz & yz & (x+y)^2 \end{vmatrix} = 2xyz(x+y+z)^3.$$

Q16. Use transformations to find inverse of
$$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$$
.

Q17. Prove that :
$$\int_{0}^{\pi/2} (\sqrt{\tan x} + \sqrt{\cot x}) dx = \sqrt{2} \pi$$
.