

UNIVERSAL EDUCATION CENTRE

JAYANT SHARMA (94145-37474, 98181-63814)

SUMMATIVE ASSESSMENT - I (2015 - 2016)

MATHEMATICS

Class – X

Visit us at: www.uecj4u.hpage.co.in

Time	e allowed: 3 hours				Maximum Marks: 90
			General Instructions:		
	l questions are compuls				
-		-	ons divided into four sect		
c) Se	questions of 2 marks	each, Section C	each which are multiple c contains 10 questions of		
	questions of 4 marks				
d) U:	se of calculator is not pe	rmitted.	Section		
O_1	H.C.F. of two consect	utivo ovon num	Section A		
Q.1	(A) 0	(B) 1	(C) 4	(D) 2	
\cap	· ,	()	The number of zeroes of	()	
Q.2	The graph of $y - p(x)$	is given below.	The number of zeroes of	p(x) are :	Ŷ
			$\langle O \rangle$		
					, , ,
	(A) 0	(B) 3	(C) 2	(D) 4	
Q.3	In figure, DE BC the	n <i>x</i> equals to :		م ه/	D E E E
	(A) 2.5 cm	(B) 2 cm	(C) 1.4 cm	(D) 4 cm	
Q.4	If $\sin\theta = \cos\theta$, then v	alue of θ is :			
	(A) 0°	(B) 45°	(C) 30°	(D) 90°	
		(-)	Section B	(-)	
Q.5	If $a \cot A + b \csc A$	$= n$ and $b \cot A$	+ a cosec θ = <i>q</i> then find	the value of n^2 -	a ²
-		•	,		y .
Q.6	In figure, AC = 13 cm	, BC = 12 cm , th	en find the value of sec θ	•	
			13 cm		
			B 12 cm C		

JAYANT SHARMA (94145-37474), send your queries to: uecclasses@gmail.com Visit us at: www.uecj4u.hpage.co.in © 2014

- Q.7 If the HCF of 85 and 153 is expressible in the form 85n 153, then find the value of n.
- Q.8 One equation of a pair of dependent linear equations is -5x + 7y = 2, then find the second equation.
- Q.9 Find The value of tan1°.tan2°.tan3°...... tan89°.
- Q.10 The mean and median of same data are 24 and 26 respectively. Find The value of mode .

Section C

- Q.11 Divide $(2x^2 + x 20)$ by (x + 3) and verify the result by division algorithm.
- Q.12 It being given that 1 is one of the zeros of the polynomial $7x x^3 6$. Find its other zeros.
- Q.13 For what value of p will the following system of equations have no solution (2p 1) x + (p 1)y = 2p + 1; y + 3x 1 = 0.

Q.14 If $\tan (A + B) = \sqrt{3}$ and $\tan (A - B) = \frac{1}{\sqrt{3}}$, $0^{\circ} < A + B \le 90^{\circ}$; A > B, find A and B.

OF

If $sin (A + B) = cos (A - B) = \frac{\sqrt{3}}{2}$ and A, B (A > B) are acute angles, find the values of A and B.

- Q.15 X and Y are points on the sides PQ and PR respectively of a ΔPQR. If the lengths of PX, QX, PY and YR (in centimeters) are 4, 4.5, 8 and 9 respectively. Then show XY || QR.
- Q.16 A pole of length 10 m casts a shadow 2 m long on the ground. At the same time a tower casts a shadow of length 50 m on the ground, then find the height of the tower.
- Q.17 The ages of employees in a factory are as follows :

Age in	17-23	23-29	29 - 35	35 - 41	41 - 47	47-53
years						
No. of	2	5	6	4	2	1
employees						

Find the median age group of the employees.

Q.18 The following is the daily pocket money spent by students.

Pocket money (₹)	0-15	15-30	30-45	45-60	60-75
No. of students	8	15	7	4	6

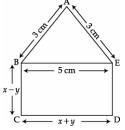
Find the mode of the above data.

Q.19 Prove that $\frac{2\sqrt{3}}{5}$ is irrational.

Q.20 Show that 4ⁿ can never end with the digit zero for any natural number n.

OR

If d is the HCF of 45 and 27, find x, y satisfying d = 27x + 45y


Section D

Q.21 Solve the following system of linear equations by cross multiplication method :

 $2(ax - by) + (a + 4b) = 0. \qquad 2(bx + ay) + (b - 4a) = 0$

OR

In the figure below ABCDE is a pentagon with BE \parallel CD and BC \parallel DE. BC is perpendicular to CD. If the perimeter of ABCDE is 21 cm, find the value of *x* and *y*.

- Q.22 On dividing the polynomial p(x) by a polynomial $g(x) = 4x^2 + 3x 2$ the quotient $q(x) = 2x^2 + 2x 1$ and remainder r(x) = 14x 10. Find the polynomial p(x).
- Q.23 Prove that (cosecA sinA) (secA cosA) = $\frac{1}{\tan A + \cot A}$
- Q.24 If cosec (A B) = 2, $\cot(A + B) = \frac{1}{\sqrt{3}}$, $0^{\circ} < (A + B) \le 90^{\circ}$, A > B, then find A and B.
- Q.25 In figure, $\triangle ABC$ is right angled at B and D is the mid point of BC. Prove that $AC^2 = 4AD^2 3AB^2$.

Q.26 In the figure given below, AD \perp BC. Prove that AB² + CD² = BD² + AC²

Figure - 6

Q.27 Find the mean of the following frequency distribution, using step deviation method.

Classes	100 - 150	150 - 200	200 - 250	250 - 300	300 - 250
Frequency	4	5	12	2	2

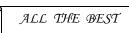
OK

The mean of the following distribution is 22, find the missing frequency f :

Class	0-10	10-20	20-30	30-40	40-50
Frequency	12	16	6	f	9

Q.28 Find the missing frequency *f* if the mode of the given data is 154.

	0	1	1	I	1	1
Class :	120 - 130	130 - 140	1/10 - 150	150 - 160	160 - 170	170 - 180
C1055 .	120 150	150 140	140 150	150 100	100 170	170 100
Erection	2	0	10	£	0	7
Frequen	cy:	0	14	1	0	/
-	5					


Q.29 Obtain all the zeroes of the polynomial $f(x) = x^4 - 7x^3 + 10x^2 - 14x - 2$, if two of its zeroes are $+\sqrt{2}$ and $-\sqrt{2}$

Q.30 Prove that in a right triangle the square of the hypotenuse is equal to the sum of the squares of the other two sides :

OR

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio. – Prove it.

Q.31 Draw the graph of 2x + y = 6 and 2x - y + 2 = 0. Shade the region bounded by these lines with *x* axis. Find the area of the shaded region.

