Visit us at: www.uecj4u.hpage.co.in

UNIVERSAL EDUCATION CENTRE

JAYANT SHARMA (94145-37474, 98181-63814)

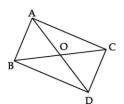
SUMMATIVE ASSESSMENT – I (2015 – 2016)

MATHEMATICS

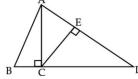
Class – X

Time allowed: 3 hours			Maximum Marks: 90
a) All questions are com		General Instructions:	
b) The question paper co		ns divided into four sect	ions – A. B. C and D.
			choice questions, Section B contains 6
-		contains 10 questions of	3 marks each and Section D contains 11
questions of 4 ma d) Use of calculator is no			
	t per mitteu.	Section A	X
Q.1 Rational number $\frac{p}{q}$,	$q \neq 0$ will be termin	nating decimal if the prim	ne factorisation of q is of the form.
(m and n are non	negative integers) :		•
(A) 2 ^m x 3 ⁿ	(B) 2 ^m x 5 ⁿ	(C) 3 ^m x 5 ⁿ	(D) 3 ^m x 7 ⁿ
Q.2 If $\sin(20 + \theta) = \cos \theta$	30°, then the value o	f θ is:	
(A) 20°	(B) 50°	(C) 30°	(D) 40°
Q.3 In the figure given b	elow, if DE BC, th	en <i>x</i> equals :	
			\bigwedge
		3 cm	У \
		2 cm/	4 cm
		P	
		B	x
(A) 3 cm $\frac{12}{12}$ (1)	(B) 2 cm	(C) 4 cm	(D) 6.7 cm
Q.4 If $\cot A = \frac{12}{5}$, then the function of $A = \frac{12}{5}$, the the function of $A = \frac{12}{5}$.			
$(A)\frac{13}{5}$	(B) $\frac{17}{5}$	$(C)\frac{14}{5}$	(D) 1
	3 2 .	Section B	
Q.5 If $(x + 1)$ is a factor of 2			-
Q.6 ΔABC is a right trian	gle right angled at ∠	C, then find the value of	$cosec^2A - tan^2B.$
Q.7 Check whether 119	9 ² - 111 ² is a prime n	umber or a composite nu	umber.
Q.8 Find The number of	solutions of the pai	r of linear equations x +	2y - 8 = 0 and $2x + 4y = 16$.
Q.9 Solve: $\left(\frac{\cos A}{\cot A} + \sin A\right)$)		
Q.10 The mean of 5 obse	ervations x , $x + 2$, $x - $	+ 4, x + 6 and x + 8 is 11,	then find the value of x .
		Section C	

Q.11 Is 7 x 6 x 5 x 4 x 3 x 2 x 1 + 5 a composite number ? Justify your answer.


Q.12 Form a quadratic polynomial whose one of the zeroes is - 15 and sum of the zeroes is 42.

Q.13 Is the system of linear equations 2x + 3y - 9 = 0 and 4x + 6y - 18 = 0 consistent? Justify your answer. Q.14 Prove that $\frac{\cos A}{1+\sin A} + \frac{1+\sin A}{\cos A} = 2 \sec A$


OR

Without using trigonometric tables prove that : tan 1° tan 11° tan 21° tan 69° tan 79° tan 89° = 1 Q.15 In the figure given below, ABC and DBC are two triangles on the same base BC. If AD intersect BC at O

then show that : $\frac{ar(ABC)}{ar(DBC)} = \frac{AO}{DO}$

Q.16 In the given figure, AC \perp BD and CE \perp AD. Prove that AC² = DA.AE.

Q.17 Find the mean age of the following data.

Age (yrs)	10 - 30	30 - 50	50 - 70	70 - 90
No. of persons	15	12	18	5

Q.18 Find the mode of the following distribution :

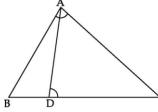
Class	0-10	10 - 20	20 - 30	30 - 40	40 - 50
Frequency	15	18	16	5	6

Q.19 Use Euclid's division lemma to show that cube of any positive integer is either of form 9q, 9q + 1, or

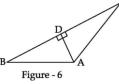
9q + 8 for some integer q.

Q.20 Show that any positive odd integer is of the form 4q + 1 or 4q + 3 where q is a positive integer.

An army contingent of 616 members is to march behind an army band of 32 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march?


Q.21 Solve for *x* and $y \frac{5}{x-1} + \frac{1}{y-2} = 2$; $\frac{6}{x-1} - \frac{3}{y-2} = 1$

The students of a class are made to stand in rows. If three students are extra in each row, there would be 1 row less. If 3 students are less in a row, there would be 2 rows more. Find the number of students in the class.


Q.22 Find the values of a and b so that the polynomial $p(x) = x^4 + x^3 + 8x^2 - ax + b$ is exactly divisible by $x^2 - 1$. Q.23 If $\cos \theta - \sin \theta = \sqrt{2} \sin \theta$, prove that $\cos \theta + \sin \theta = \sqrt{2} \cos \theta$.

Q.24 If A, B, C are interior angles of $\triangle ABC$, show that : $\cos^2 \frac{A}{2} + \cos^2 \left(\frac{B+C}{2}\right) = 1$

Q.25 In figure above, D is a point on the side BC of \triangle ABC such that \angle BAC = \angle ADC. Prove that CA² = CB x CD.

Q.26 In the figure given below, AD \perp BC. Prove that AB² + CD² = BD² + AC² :

Q.27 The mean of the following frequency distribution is 25. Determine the value of p

Classes	0 – 10	10 - 20	20 - 30	30 - 40	40 - 50
Frequency	5	18	15	Р	6

OR

The distribution below gives the weight of 30 students of a class. Find the median weight of the students.

Weight	40 - 45	45 - 50	50 - 55	55 - 60	60 - 65	65 - 70	70 - 75
in kg							
No. of	2	3	8	6	6	3	2
students							

Q.28 Find the median of the following data

Class	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	Total
Frequency	8	16	36	34	6	100

Q.29 Sum of the two zeroes of a polynomial of degree 4 is - 1 and their product is - 2. If other two zeroes are $\sqrt{3}$ and $-\sqrt{3}$. Find the polynomial.

Q.30 Prove that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

OR

OR

The areas of two similar triangles are 49 cm^2 and 64 cm^2 respectively. If the difference of the corresponding altitudes is 10 cm, then find the lengths of altitudes (in centimeters).

Q.31 Prove that $\cos^8\theta - \sin^8\theta = (\cos^2 - \sin^2\theta) (1 - 2\sin^2\theta \cos^2\theta)$:

Prove that
$$\sqrt{\frac{1+\sin\theta}{1-\sin\theta}} + \sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = 2 \sec\theta.$$

ALL THE BEST