RELATIONS AND FUNCTIONS

1 Mark

- 1) If $f(x) = \frac{x-1}{x+1}$, $(x \ne 1,-1)$, show that fof⁻¹ is an identity function.
- 2) If $f(x) = \sin^2 x + \sin^2 \left(x + \frac{\Pi}{3}\right) + \cos x \cdot \cos \left(x + \frac{\Pi}{3}\right)$ and $g\left(\frac{5}{4}\right) = 1$, then find the value of gof(x) = x

(Ans: 1)

- Let * be a binary operation on the set of real numbers. If a * b = a+b-ab, 2 * (3 * x) = -7, find the value of x. (Ans : x=-2)
- 4) Find the number of One-One functions from a finite set A to A, where n(A) = P (Ans: P!)
- Let $A = \{4,5,0\}$. Find the number of binary operations that can be defined on A. (Ans: 3^9)
- 6) Let $\int :\{R \to R\}$ be a function defined by $f(x) = x^2-3x+4$, for all $x \in R$, find the value of $f^{-1}(2)$

Ans: {1,2}

7) Let $f: R \to R$ defined by $f(x) = (ax^2 + b)^3$ find the function $g: R \to R$ such that f(g(x)) = g(f(x))

Ans:
$$\left[\frac{x^{\frac{1}{3}}-b}{a}\right]^{\frac{1}{2}}$$

- 8) If $f(x) = \frac{5x+3}{4x-5} \left(x \neq \frac{5}{4} \right)$, find g(x) such that gof(x) = x Ans: $g(x) = \frac{5x+3}{4x-5}$
- 9) If $f(x) = \frac{1+x}{1-x}$, show that $f[f(\tan \theta)] = -\cot \theta$
- 10) Show that $\frac{1}{\sin^3 x} + \cot x + \frac{1}{x^5} + x^3$ is an odd function.
- 11) Let f, g be two functions defined by

$$f(x) = \frac{x}{x+1}, g(x) = \frac{x}{1-x}, \text{ then find (fog)}^{-1}(x)$$
 Ans: x

12) Let $f(x) = \frac{\alpha x}{x+1}$, $x \ne -1$, find the value of α such that f(f(x)) = x Ans: $\alpha = -1$

4 Marks / 6 marks

13) If
$$f(x) = log\left(\frac{1+x}{1-x}\right)$$
, show that $f(x) + f(y) = f\left(\frac{x+y}{1+xy}\right)$

- 14) If R is a relation on a set $A(A \neq \phi)$, prove that R is symmetric iff $R^{-1} = R$
- 15) Show that the relation R on N x N defined by $(a,b)R(c,d) \Leftrightarrow a+d = b+c$ is an equivalence relation.
- 16) Let $f: R_+ \to [-5, \infty)$ given by $f(x) = 9x^2 + 6x 5$. Show that f is invertiable with $f^{-1}(y) = \frac{\sqrt{y+6}-1}{3}$
- 17) Show that the relation "congruence modulo 2" on the set Z (set of integers) is an equivalence relation. Also find the equivalence class of 1.

18) If the function $f : R \to A$ given by $f(x) = \frac{x^2}{x^2 + 1}$ is surjection, find the set A.

Ans: A = Range of f(x)=[0,1)

- 19) Let a relation R on the set R of real numbers be defined as (a,b) $\epsilon R \Leftrightarrow 1+ab>0$ for all a,b ϵR . show that R is reflexive and symmetric but not transitive.
- 20) Let a relation R on the set R of real numbers defined as $(x,y) \in R \Leftrightarrow x^2 4xy + 3y^2 = 0$. Show that R is reflexive but neither symmetric nor transitive.
- Let N denote the set of all natural numbers and R be the relation on N x N defined by $(a,b)R(c,d) \Leftrightarrow ad(b+c) = bc(a+d)$. Show that R is an equivalence relation on N x N.
- 22) Prove that the inverse of an equivalence relation is an equivalence relation.
- 23) Let $f: A \to B$ be a given function. A relation R in the set A is given by $R = \{(a,b) \in A \times A : f(a) = f(b)\}$. Check, if R is an equivalence relation. Ans: Yes
- Let f and g be real valued functions, such that $(fog)(x) = cosx^3$ and $(gof)(x) = cos^3x$, find the functions f and g.

 Ans: f(x) = cosx, $g(x) = x^3$
- Define a binary operation * on the set A = $\{0,1,2,3,4,5\}$ as

$$a * b = \begin{cases} a + b, & \text{if } a + b < 6 \\ a + b - 6, & \text{if } a + b \ge 6 \end{cases}$$

Show that zero is an identity element for this operation and each element a of the set is invertiable with 6-a being the inverse of a.

- Show that the function $f: N \to N$ given by $f(x) = x (-1)^x$ for all $x \in N$ is a bijection.
- 27) Prove that relation R defined on the set N of natural numbers by $x R y \Leftrightarrow 2x^2-3xy+y^2=0$ is not symmetric but it is reflexive.
- 28) Let $X = \{1,2,3,4,5,6,7,8,9\}$. Let R_1 and R_2 be relations in X given by $R_1 = \{(x,y) : x-y \text{ is divisible by 3} \}$ and $R_2 = \{(x,y) : \{x,y\} \in \{1,4,7\} \text{ or } \{x,y\} \in \{2,5,8\} \}$ or $\{x,y\} \in \{3,6,9\}$. Show that $R_1 = R_2$
- 29) Determine which of the following functions

$$f: R \rightarrow R$$
 are (a) One - One (b) Onto

(i)
$$f(x) = |x| + x$$

(ii)
$$f(x) = x - [x]$$

(Ans: (i) and (ii) → Neither One-One nor Onto)

On the set N of natural numbers, define the operation * on N by m*n = gcd(m,n) for all m, n ϵ N. Show that * is commutative as well as associative.
