Q12. Write the differential equation of the family of circles with fixed radius 5 units and centre on the straight line y = 2.

Serving you for all your Maths needs @ www.theOPGupta.com/Q13. Evaluate $\int_{a}^{2} [x^2] dx$.OREvaluate $\int_{a}^{\pi/2} \frac{\cos x}{\sqrt{2}} dx$

OR Evaluate
$$\int_{0}^{0} \frac{\cos x}{\left(\cos \frac{x}{2} + \sin \frac{x}{2}\right)^3} dx$$

Q14. Solve: $\tan^{-1}\left(\frac{2x}{1-x^2}\right) + \cot^{-1}\left(\frac{1-x^2}{2x}\right) = \frac{\pi}{3}, x > 0.$

OR Prove that :
$$\cos^{-1}\left(\frac{\cos\alpha + \cos\beta}{1 + \cos\alpha\cos\beta}\right) = 2\tan^{-1}\left(\tan\frac{\alpha}{2}\tan\frac{\beta}{2}\right).$$

- **Q15.** Solve : cosec x log y $\frac{dy}{dx}$ + x²y² = 0. **Q16.** Evaluate : $\int \sqrt[3]{\frac{\sin^2 x}{\cos^{14} x}} dx$.
- 017. In a hurdle race, a player has to cross 10 hurdles. The probability that he will clear each hurdle is 5/6. What is the probability that he will knock down fewer than 2 hurdles?
- Find the equations of the perpendicular drawn from the point (2, 4, -1) to the line **O18**. $x+5=\frac{1}{4}(y+3)=-\frac{1}{9}(z-6)$ and hence obtain the coordinates of the foot of this perpendicular.

If the product of the distances of the point (1, 1, 1) from the origin and the plane OR x - y + z + k = 0 be 5, then determine the value of k.

Solve the system of equations : 2x - y + 3z = 5, 3x + 2y - z = 7, 4x + 5y - 5z = 9. 019.

SECTION – C

For two vectors \vec{a} and \vec{b} , state and prove Cauchy-Schwartz inequality. **Q20**.

Prove that for any two vectors \vec{a} and \vec{b} , we always have $|\vec{a} + \vec{b}| \le |\vec{a}| + |\vec{b}|$. OR

An oil company has two depots A and B with capacities of 7000 L and 4000 L respectively. The Q21. company is to supply oil to three petrol pumps, D, E and F whose requirements are 4500 L, 3000 L and 3500 L respectively. The distances (in km.) between the depots and the petrol pumps is given in the table shown below :

		Distance (in km.)	20	
Fr	om/To	Α	B	
	D	7	3	
	Е	6	4	
	F	3	2	

Assuming that the transportation cost of 10 litres of oil is \mathbf{z} 1 per km, how should the delivery be scheduled in order that the transportation cost is minimum? What is the minimum cost?

- Of all the closed right circular cylindrical cans of volume 128π cm³, find the dimension of the **Q22**. can which has minimum surface area.
- Find the area enclosed by $x^2 + y^2 6x 4y + 12 \le 0$, $y \le x$ and $x \le 5/2$. Q23.
- If $x \cos \alpha + y \sin \alpha = p$ touches the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then prove that $a^2 \cos^2 \alpha + b^2 \sin^2 \alpha = p^2$. Q24.
 - Profit function of a company is given as $p(x) = \frac{24x}{5} \frac{x^2}{100} 500$ where x is the number of OR units produced. What is the maximum profit of the company? Company feels its social responsibility and decided to contribute 10% of his profit for the orphanage. What is the amount contributed by the company for the charity? Should every company do it?
- The probability of simultaneous occurrence of at least one of two events A and B is p. If the Q25. probability that exactly one of A, B occurs is q, then prove that P(A') + P(B') = 2 - 2p + q.
- Find the equation of a plane passing through the intersection of planes 2x+3y-z+1=0 and Q26. x+y-2z+3=0 and perpendicular to the plane 3x-y-2z=4. Also find the inclination of this plane with xy-plane.

Serving you for all your Maths needs @ www.theOPGupta.com/ HINTS / ANSWERS / REFERENCES Of SSTS - 02

Q01. (3, 1). **Q02.** π . **Q03.** $f'(x) = \begin{cases} 1, & \text{if } x > 0 \\ -1, & \text{if } x > 0 \end{cases}$.

Q04. Maximum value = 3 and minimum value isn't defined.

Q05. -4A. **Q06.** x + y + z = 1. **Q07.** $\Delta = -8$ (See O.P. Gupta's Mathematicia Vol. 1).

Q08.
$$\frac{dy}{dx} = \frac{2x^{x}(1+\log x)}{1+x^{2x}} \qquad \therefore \frac{dy}{dx} \Big]_{at x=1} = 1$$

OR $xy^{2} = 1 \qquad \Rightarrow x = \frac{1}{y^{2}} \qquad \Rightarrow \frac{dx}{dx} = \frac{d}{dx} \left(\frac{1}{y^{2}}\right) \qquad \Rightarrow 1 = \left(-\frac{2}{y^{3}}\right) \times \frac{dy}{dx}$
$$\Rightarrow x^{3} = 2 \frac{dy}{dx} \qquad \Rightarrow 2\left(\frac{dy}{dx}\right) + x^{3} = 0$$

$$= \int dx \qquad \dots \ dx \qquad (dx)^{+} \int dx \qquad (dx)^{+}$$

Q09. $fog(x) = \begin{cases} 0, \text{ if } x \ge 0 \\ -4x, \text{ if } x < 0 \end{cases}$ and, $gof(x) = 0 \ \forall x \in \mathbb{R}$

Q10.
$$-3/2$$
, $1/2$ **Q11.** ₹12000 and ₹18000.

Q12.
$$(y-2)^2 y_1^2 = 25 - (y-2)^2$$

Q13. Let
$$I = \int_{0}^{2} [x^{2}] dx \implies I = \int_{0}^{1} [x^{2}] dx + \int_{1}^{\sqrt{2}} [x^{2}] dx + \int_{\sqrt{2}}^{\sqrt{2}} [x^{2}] dx + \int_{\sqrt{3}}^{2} [x^{2}] dx + \int_{\sqrt{3}}^{2} [x^{2}] dx = \int_{0}^{1} 0 dx + \int_{1}^{\sqrt{2}} 1 dx + \int_{\sqrt{2}}^{\sqrt{3}} 2 dx + \int_{\sqrt{3}}^{2} 3 dx = 5 - \sqrt{2} - \sqrt{3}$$

Note that here we have broken the given limits of x in such a way that on squaring, they results into two consecutive integers for x^2 . [As in $\sqrt{2} < x < \sqrt{3} \implies 2 < x^2 < 3$]

OR Let
$$I = \int_{0}^{\pi/2} \frac{\cos x}{\left(\cos \frac{x}{2} + \sin \frac{x}{2}\right)^3} dx$$
 $\Rightarrow I = \int_{0}^{\pi/2} \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\left(\cos \frac{x}{2} + \sin \frac{x}{2}\right)^3} dx$

 $\Rightarrow I = \int_{0}^{\pi/2} \frac{\cos \frac{x}{2} - \sin \frac{x}{2}}{\left(\cos \frac{x}{2} + \sin \frac{x}{2}\right)^2} dx$. Then substitute $\cos \frac{x}{2} + \sin \frac{x}{2} = t$ and proceed to get : $I = 2 - \sqrt{2}$.

Q14.
$$x = 2 - \sqrt{3}$$
. Q15. $1 + \log y = y(2\cos x + 2x\sin x - x^2\cos x) + Cy$.

Q16. Let
$$I = \int \sqrt[3]{\frac{\sin^2 x}{\cos^{14} x}} dx \qquad \Rightarrow I = \int \frac{\sin^{2/3} x}{\cos^{14/3} x} \times \frac{\cos^4 x}{\cos^4 x} dx \Rightarrow I = \int \frac{\sin^{2/3} x}{\cos^{2/3} x} \times \frac{1}{\cos^4 x} dx$$

 $\Rightarrow I = \int \tan^{2/3} x \sec^4 x \, dx \, . \text{ Then proceed further to get : } I = \frac{3}{5} \tan^{5/3} x + \frac{3}{11} \tan^{11/3} x + C \, .$

Q17.
$$\frac{5^{10}}{2 \times 6^9}$$
 Q18. (-4, 1, -3), $\frac{x-2}{6} = \frac{y-4}{3} = \frac{z+1}{2}$. OR $k = 4, -6$.

Q19. See O.P. Gupta's Mathematicia Vol.1.

Q20. See O.P. Gupta's Mathematicia Vol.2 for both the options.

Q21. See O.P. Gupta's Mathematicia Vol.1.

Q22. Radius and height are respectively 4 and 8 (both in cm).

Q24. See O.P. Gupta's Mathematicia Vol.1.

Q23. $\left(\frac{\sqrt{3}+1}{8}-\frac{\pi}{6}\right)$ sq. units

Max. profit is ₹76. Amount for charity is ₹7.60.

Q26.
$$7x + 13y + 4z - 9 = 0$$
, $\cos^{-1}\left(\frac{4}{3\sqrt{26}}\right)$.

OR