

CLASS XII SAMPLE PAPER PHYSICS

SECTION -A

- 1. The dielectric constant of water is 80 . what is its permittivity?
- 2. How many electrons flow per second through an electric bulb rated 220V, 100W.?
- 3. State Curie's law in ferromagnetic substances.
- 4. Why is interference patterns not detected ,when the two coherent sources are far apart?
- 5. In the nuclear decay reaction ${}_1^1H \to {}_0^1n + {}_0^PX$ find P , Q and identify X.

SECTION -B

- 6. By what factor does the capacitance of a metal sphere increases if its volume is tripled?
- 7. I-V graph of a metallic wire at two different temperatures T_1 and T_2 is as shown in fig. Which of the

two temperatures is lower and why?

- 8. Two long and parallel straight wires A and B carrying current of 8.0A and 5.0A in the same direction are separated by a distance of 4.0 cm. Estimate the force on a 10 cm section of wire A.
- 9. The electric current in a circuit is given by $i=i_0^-\frac{3t^2}{\tau}$ for some time . Calculate the rms current for the period t=0 to $t=\tau$.
- 10. Calculate the angle of minimum deviation for an equilateral triangular prism of refractive index $\sqrt{3}$.

SECTION -C

11. Three concentric metallic shells A,B and C of radii a ,b and c (a<b<c) have surface charge densities $+\sigma$

, $-\sigma$ and $+\sigma$ respectively .

- (i) Find potential of three shells A ,B ,and C.
- (ii) If shell A and C are at the same potential

Obtain the relation between a,b and c.

12. In fig. X, Y and Z are ammeters

- (i) What are the readings in ammeters X and Z?
- (ii) What is total resistance of the circuit?
- 13. A charged particle (q) moving with velocity (V) at a certain angle (θ) made with an uniform magnetic field (B) . Explain the nature of the trajectory of the charged particle . Is th frequency of the particle depends on the angle θ ? Find the expression of frequency .
- 14. An electron moves around the nucleus in a hydrogen atom of radius 0.51 $\overset{\circ}{A}$, with a velocity of $2\times 10^6\,ms^{-1}$ Calculate the following :
- (i) the equivalent current due to orbital motion of electron .
- (ii) the magnetic field produced at the centre of the nucleus .
- (iii) the magnetic moment associated with the electron.

15. State Faraday's law of electromagnetic induction .

A metallic rod of length x is rotated at an angular speed ω in a plane normal to magnetic field B .Derive the expression for the (i) emf induced in the rod (ii) current induced (iii) heat dissipated , if the resistance of rod is R .

16. a) In the following circuit calculate:

- (i) the capacitance of the capacitor, if the power factor
- Of circuit is unity.
- (ii) calculate the Q-factor of the circuit .
- b) What is power factor? With the phasor diagram explain the wattles current in LCR series circuit.
- 17. a) which of the following if any, can act as a source of electromagnetic wave:
- (i) A charge moving with constant velocity.
- (ii) A charge moving in a circular orbit .
- (iii) A charge at rest.

Give reason.

- b) Identify the part of electromagnetic spectrum , to which waves of frequency (i) $10^{20} Hz$ (ii) $10^9 Hz$ belong .
- C) How are X-ray produced?
- Or, the oscillating electric field of an electromagnetic wave is given by:

$$E_y = 30\sin[2\times10^{11}t + 300\pi x] Vm^{-1}$$

- a) Obtain the value of the wavelength of the electromagnetic wave .
- b) Write down the expression for the oscillating magnetic field.

CBSE Sample Papers | CBSE Guess Papers | CBSE Practice Papers | Important Questions | CBSE PSA | CBSE OTBA | Proficiency Test | 10 Years Question Bank | CBSE Guide | CBSE Syllabus | Indian Tutors | Teacher' Jobs CBSE eBooks | Schools | Alumni | CBSE Results | CBSE Datesheet | CBSE News

- c) What is the direction of propagation of wave?
- 18) a) Write the lens maker formula.

b) In the following diagram are given positions of an object 'O' image 'I' . and two lenses $L_{\rm l}$ and $L_{\rm 2}$, the focal length of $L_{\rm l}$. Find the focal length of $L_{\rm 2}$.

- 19) a) Apply Huygens' principle to prove the law of refraction (Snell's law) in wave theory.
- b) Explain why no backward waveform is possible.
- 20) a) What is angle of polarization? Write Brewster's law of Polarization.
- b) In a double slit interference experiment , the two coherent beams have slightly different intensities I and $I+\Delta I$ ($\Delta I<< I$) . Show that resultant intensity at the maxima is nearly 4I , while that at the

minima is nearly $\frac{\left|\Delta I\right|^2}{4I}$.

21) Define the terms (i) 'Cut-off voltage ' and (ii) threshold frequency in relation to the phenomenon of photoelectric effect .

Write Einstein's photoelectric equation .Using the equation show how the Cut-off Voltage and threshold frequency for a given photosensitive material can be determined with the help of a suitable plot / graph.

- 22. a) Which state of the triply ionized beryllium $\left(Be^{3+}\right)$ has the same orbital radius as that of the ground state of hydrogen ?
- b) show that the ionization potential of hydrogen atom is 13.6 Volt.

SECTION -D

- 23. Arnab was taking on his mobile to his friend for a long time. After his conversation was over, his sister Anita advised him that if his conversation was of such a long duration, it would be better to talk through a land line.
- a) Why it is considered harmful to use a mobile phone for a long time?
- b) Which values are reflected in the advice of his sister Anita?
- c) A message signal of frequency 10KHz is superposed to modulated carrier wave of frequency 1MHz .Determine the sidebands produced .

SECTION -E

- 24. a) State Ampere's circuital law . Apply this law to find the expression of magnetic field for a long straight solenoid .
- b) A positive charge of 1.5 μ C is moving with a speed of $2\times10^6\,ms^{-1}$ along the positive x-axis . A magnetic field $\vec{B}=\left(0.2\,\hat{j}+0.4\hat{k}\right)$ tesla acts in space . Find the magnetic force acting on the charge .
- c) Find the magnetic field at the centre 'O' for the current loop .

Also find the direction of magnetic field.

25. Draw the symbolic representation of a (i) p-n-p , (ii) n-p-n transistor . Why is the base region of transistor thin and lightly doped ?

With proper circuit diagram , show the biasing of a p-n-p transistor in common emitter configuration . Explain the movement of charge carriers through different parts of the transistor in such a configuration and show that $I_E=I_C+I_B$.

CBSEGuess.com

OR, Draw labeled diagram of an astronomical telescope . Write mathematical expression of its magnifying power . How does magnifying power get affected on increasing the apparture of the objective lens and why?

26. State the laws of radioactive decay and on their basis establish a relationship between the number N of nuclei present at any time t in terms of number N_0 of nuclei present at time t=0 and the disintegration constant λ .

Hence Define the half – life $T_{\rm 1/2}$ and disintegration constant λ .

OR, Along a straight line there is an infinite number of alternating positive and negative charges $\pm q$, all adjacent charges being separated by the same distance r. Show that the potential energy of one charge is $-\left(\frac{q^2}{2\pi\varepsilon_0 r}\right)\log(2)$.

What is the principle of Potentiometer ? How it can be used to measure the internal resistance of a cell ?

Prepared By: Mr. Pintu Paul, A CBSE School teacher(PGT Physics)

M: 9436944941 / 70005282625