

Quadratic Equation

Quadratic Polynomial

 $P(x) = ax^2 + bx + c$ where $a \ne 0$

Quadratic equation

 $ax^2 +bx+c = 0$ where $a \neq 0$

Solution or root of the Quadratic equation

A real number α is called the root or solution of the quadratic equation if $a\alpha^2 + b\alpha + c = 0$

Some other points to remember

- The root of the quadratic equation is the zeroes of the polynomial p(x).
- We know from chapter two that a polynomial of degree can have max two zeroes. So a quadratic equation can have maximum two roots
- A quadratic equation has no real roots if b²- 4ac < 0

How to Solve Quadratic equation

S.no	Method	Working
1	factorization	This method we factorize the equation by splitting the middle term b

This material is created by http://physicscatalyst.com/ and is for your personal and non-commercial use only.

		In ax ² +bx+c=0
		Example
		6x ² -x-2=0
		1) First we need to multiple the coefficient a and c.In this case =6X-2=-12
		2) Splitting the middle term so that multiplication is 12 and difference is the coefficient b
		$6x^2 + 3x - 4x - 2 = 0$
		3x(2x+1) -2(2x+1)=0
		(3x-2) (2x+1)=0
		3) Roots of the equation can be find equating the factors to zero
		$3x-2=0 \Rightarrow x=3/2$
		$2x+1=0 \Rightarrow x=-1/2$
2	Square method	In this method we create square on LHS and RHS and then find the value.
		ax² +bx+c=0
		1) $x^2 + (b/a) x + (c/a) = 0$
		2) $(x+b/2a)^2 - (b/2a)^2 + (c/a) = 0$
		3) (x+b/2a) ² =(b ² -4ac)/4a ²
		$4) x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
		Example
		$x^2 + 4x - 5 = 0$

		1) (x+2) ² -4-5=0			
		2) (x+2) ² =9			
		3) Roots of the equation can be find using square root on both the sides			
		x+2 =-3 => x=-5			
		x+2=3=> x=1			
3	Quadratic method	For quadratic equation			
		$ax^2 +bx+c=0,$			
		roots are given by			
		$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$, $x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$			
		For b ² -4ac > 0, Quadratic equation has two real roots of different value			
		For b ² -4ac =0, quadratic equation has one real root			
		For b ² -4ac < 0, no real roots for quadratic equation			

Nature of roots of Quadratic equation

S.no	Condition	Nature of roots
1	b^2 -4ac > 0	Two distinct real roots
2	b ² -4ac =0	One real root
3	b ² -4ac < 0	No real roots

This material is created by http://physicscatalyst.com/ and is for your personal and non-commercial use only.