Visit us at www.agyatgupta.com

TARGET MATHEMATICS THE EXCELLENCE KEY AGYAT GUPTA (M.Sc., M.Phil.)

CODE:0801-TS-1

REGNO:-TMC-D/79/89/36/63

General Instructions :-

- (i) All Question are compulsory:
- (ii) This question paper contains 29 questions.
- (iii) Question **1-4** in **Section A** are very sort-answer type question carrying **1** mark each.
- (iv) Question **5-12**in **Section B** are sort-answer type question carrying **2** mark each.
- (v) Question 13-23 in Section C are long-answer-I type question carrying 4 mark each.
- (vi) Question **24-29** in **Section D** are long-answer-**II** type question carrying **6** mark each
- (vii) There is no overall choice. However, internal choice has been provided in 3 question of four marks and 3 questions of six marks each. You have to attempt only one If the alternatives in all such questions.
- (viii) Use of calculator is not permitted.
- (ix) Please check that this question paper contains 6 printed pages.
- (x) Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.

सामान्य निर्देश :

- 1. सभी प्रश्न अनिवार्य हैं।
- 2. इस प्रश्न पत्र में 29 प्रश्न है, जो 4 खण्डों में अ, ब,स व द है। खण्ड अ में 4 प्रश्न हैं और प्रत्येक प्रश्न 1 अंक का है। खण्ड — ब में 8 प्रश्न हैं और प्रत्येक प्रश्न 2 अंको के हैं। खण्ड — स में 11 प्रश्न हैं और प्रत्येक प्रश्न 4 अंको का है। खण्ड — द में 6 प्रश्न हैं और प्रत्येक प्रश्न 6 अंको का है।
- 3. इसमें कोई भी सर्वोपरि विकल्प नहीं है, लेकिन आंतरिक विकल्प 3 प्रश्न 4 अंको में और 3 प्रश्न 6 अंको में दिए गए हैं। आप दिए गए विकल्पों में से एक विकल्प का चयन करें।
- 4. कैलकुलेटर का प्रयोग वर्जित हैं।
- 5. कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृश्ठ 6 हैं।
- 6. प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख- पृश्ठ पर

Visit us at www.agyatgupta.com

लिखें।

O 2 TC A ·

PRE-BOARD EXAMINATION 2016 -17

Time: 3 Hours Maximum Marks: 100

CLASS – XII MATHEMATICS

PART - A (Question 1 to 4 carry 1 mark each.)

Q.1	Let set $A = \{3, 5, 6\}$ and set $B = \{1, 4\}$. A relation R from set A to set B is defined
	as $R = \{(a,b) \in A \times B : a-b \text{ is an even number}\}$. List the elements of relation R.
	यदि समुच्चय $A = \{3, 5, 6\}$ और समुच्चय $B = \{1,4\}$ में सबंधं R इस प्रकार परिभाशित है कि समुच्चय
	R= {(a,b) ∈ A×B: a–b एक समसंख्या है}, तो सम्बन्ध R के सभी अवयव ज्ञात कीजिए।

Q.2	If A	is a	square	matrix	such	that	А	= 1,	then	find	the	simplified	value	OΪ
	$(A-I)^3$	+ (A -	+ I) ³ – 7A											
									, (A	ı\3 .	(A .	1) ³ 7 A		

यदि A एक ऐसा वर्ग आव्यूह है कि $A^2 = I$ है, तो $(A - I)^3 + (A + I)^3 - 7A$ का सरतलतम मान ज्ञात कीजिए I

Q.3 Find λ , μ if $(2i + 26j + 27k) \times (i + \lambda j + \mu k) = 0$.

 λ, μ ज्ञात कीजिए यदि $(2i+26j+27k)\times(i+\lambda j+\mu k)=0$.

Q.4 If $f(x) = x^2 + 1$, then $f^{-1}(17)$. यदि $f(x) = x^2 + 1$, तब $f^{-1}(17)$ ।

PART - B (Question 5 to 12 carry 2 mark each.)

Q.5 Solve the equation for $x : \sin^{-1} x + \sin^{-1} (1-x) = \cos^{-1} x$ $x \Rightarrow \text{ लिये हल कीजिए} : \sin^{-1} x + \sin^{-1} (1-x) = \cos^{-1} x$

Q.6 Write the number of all possible matrices of order 2×2 with each entry 1, 2 or 3 कोटि 2×2 के सभी संभव आव्यूहों की संख्या, जिनका प्रत्येक अवयव 1, 2 अथवा 3 है, लिखिए।

Find $\frac{dy}{dx}$ if $y = \sin^{-1} \left[\frac{6x - 4\sqrt{1 - 4x^2}}{5} \right]$

Target Mathematics by- AGYAT GUPTA; Resi.: D-79 Vasant Vihar; Office: 89-Laxmi bai colony **Ph. 4010685®**, 2630601(0) **Mobile: 9425109601(P); 9425110860;7000738223**

Visit us at www.agvatgupta.com

	v isit us at w w w.agyatgupta.com						
	यदि $y = \sin^{-1}\left[\frac{6x - 4\sqrt{1 - 4x^2}}{5}\right]$ है तो $\frac{dy}{dx}$ ज्ञात कीजिए।						
Q.8	The equation of tangent at (2, 3) on the curve $y^2 = ax^3 + b$ is $y = 4x - 5$ Find the value of a and b.						
	यदि वक्र $y^2 = ax^3 + b$ के बिंदु $(2, 3)$ पर स्पर्श रेखा का समाकीरण $y = 4x - 5$ है, तो a तथा b के मान ज्ञात कीजिए $ $						
Q.9	Evaluate :मान ज्ञात कीजिए : $\int 2^{2^{2^x}} 2^{2^x} 2^x dx$.						
Q.10	Form the differential equation of the family of circle in the second quadrant and touching the coordinate axes. द्वितीय चतुर्थांश में ऐसे वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए जो निर्देशांक अक्षों को स्पर्श करते है।						
Q.11	Find the co-ordinates of the point where the line $\vec{r} = (-\hat{i} - 2\hat{j} - 3\hat{k}) + \lambda(3\hat{i} + 4\hat{j} + 3\hat{k})$						
	meets the plane which is perpendicular to the vector $n = \hat{i} + \hat{j} + 3\hat{k}$ and at a distance of						
	$\frac{1}{\sqrt{11}}$ from origin.						
	उस बिंदु के निर्देशांक ज्ञात कीजिए जहाँ रेखा $\vec{r}=(-\hat{i}-2\hat{j}-3\hat{k})+\lambda(3\hat{i}+4\hat{j}+3\hat{k})$ उस						
	समतल को मिलती है जो सदिश $\vec{n} = \hat{i} + \hat{j} + 3\hat{k}$ पर लंबवत है तथा मूल बिंदु से $\sqrt{11}$ की दूरी पर है।						
Q.12	The probability that A hits a target is $\frac{1}{3}$ and the probability that B hits it is $\frac{2}{5}$. If each						
	one of A and B shoots at the target, what is the probability that the target is hit?						
	A के लक्ष्यभेदन की प्रायिकता $\frac{1}{3}$ तथा B के लक्ष्यभेदन की प्रायिकता $\frac{2}{5}$ है। यदि A और B दोनों						
	लक्ष्यभेदन का प्रयास करें, तो प्रायिकता क्या है कि लक्ष्यभेदन हो जाए?तथा						
	PART - C (Question 13 to 23 carry 4 mark each.)						
	ANAL CLEANING COMPANY CONTRACTOR						

	Visit us at www.agyatgupta.com
Q.13	Ishan wants to donate a rectangular plot of land for a school in his village. When he
	was asked to give dimensions of the plot, he told that if its length is decreased by
	50m and breath is increased by 50 m, then its area will remain same, but if length is
	decreased by 10 m and breadth is decreased by 20m, then its area will decrease by
	5300 m ² . Using matrices, find the dimensions of the plot. Also give reason why
	he wants to donate the plot for a school. ईशान अपने गाँव में एक आयताकार भूखण्ड, विद्यालय के लिये दान देना चाहता है।
	जब उससे भूखण्ड की विमाएँ पूछी गईं तो उसने बताया कि यदि इसकी लंबाई 50 मी.
	कम तथा चौडाई 50 मी. बढ़ा दी जाए तो इसका क्षेत्रफल समान रहेगा परन्तु यदि
	इसकी लंबाई 10 मी. कम कर दी जाए तथा चौडाई 20 मी. कम कर दी जाए तो
	इसका क्षेत्रफल 5300 मी ² कम हो जाएगा । आव्यूओं के प्रयोग से इस प्लाट की विमाएँ
	ज्ञात कीजिए । कारण भी दीजिए कि वह प्लाट क्यों दान देना चाहता है।
Q.14	$1-\sin^3 x$ π
	$\left \frac{1 - \sin^3 x}{3\cos^2 x} \right \text{if } x < \frac{\pi}{2}$
	The function f is given by दिया गया फलन f है। $f(x) = \begin{cases} p, & \text{if } x = \frac{\pi}{2} \end{cases}$.
	$\frac{q(1-\sin x)}{(\pi-2x)^2} if x > \frac{\pi}{2}$
	$(\pi-2x)$ 2
	Find the values of p and q if f is continuous at $x = \frac{\pi}{2}$. p तथा q का मान ज्ञात
	कीजिए यदि $x = \frac{\pi}{2}$ पर सतत् है।
Q.15	Differentiate $x^{\sin x} + (\sin x)^{\cos x}$ with respect to x.
	$x^{\sin x} + (\sin x)^{\cos x}$ का x के सापेक्ष अवकलन कीजिए ।
Q.16	Show that the equation of normal at any point t on the curve $x = 3 \cos t - \cos^3 t$ and
	$y = 3 \sin t - \sin^3 t \frac{1}{15} 4 \left(y \cos^3 t - x \sin^3 t \right) = 3 \sin 4t$
	दर्शाइए कि वक $x = 3 \cos t - \cos^3 t$ तथा $y = 3 \sin t - \sin^3 t$ के किसी बिंदु t पर
	अभिलंब का समीकरण $4(y\cos^3 t - x\sin^3 t) = 3\sin 4t$. $4(y\cos^3 t - x\sin^3 t) = 3\sin 4t$.
	or अथवा

Visit us at www.agyatgupta.com

	visit us at www.agyatgupta.com
	Determine the intervals in which the function $f(x) = x^4 - 8x^3 + 22x^2 - 24x + 21$ is
	strictly increasing or strictly decreasing.
	अंतराल ज्ञात कीजिए जहाँ पर फलन $f(x) = x^4 - 8x^3 + 22x^2 - 24x + 21$ निरंतर वर्धमान अथवा निरंतर ह्यासमान है।
Q.17	Find the area of the greatest isosceles triangle that can be inscribed in a given ellipse
	having its vertex coinciding with one extremity of major axis.
	किसी समबाहु त्रिभुज का अधिकतम क्षेत्रफल ज्ञात कीजिए जो एक दिये दीर्घवृत्त के अंदर बना है। जिसका शीर्ष एक दीर्घअक्ष के सिरे पर है।
	or अथवा
	Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is $6\sqrt{3}$ r.
	सिद्ध कीजिए कि समद्विबाहु त्रिभुज, जिसमे r त्रिज्या का एक अंतवृत खींचा गया है, का
	न्यूनतम परिमाप $6\sqrt{3}$ है।
Q.18	Evaluate :मान ज्ञात कीजिए : $\int \frac{x^3 + x}{x^4 - 9} dx$.
Q.19	Solve the differential equation: $x \frac{dy}{dx} + y - x + xy \cot x = 0; x \neq 0.$
	अवकल समीकरण को हल कीजिए: $x \frac{dy}{dx} + y - x + xy \cot x = 0; x \neq 0.$
Q.20	Given that vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} from a triangle such that $\overrightarrow{a} = \overrightarrow{b} + \overrightarrow{c}$. Find p, q, r, s such that
	area of triangle is $5\sqrt{6}$ where $\vec{a} = p\hat{i} + q\hat{j} + r\hat{k}$, $\vec{b} = s\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j} - 2\hat{k}$.
	दिया है कि तीन सिदश \vec{a} , \vec{b} तथा \vec{c} इस प्रकार एक त्रिभुज बनाते है कि $\vec{a}=\vec{b}+\vec{c}$ । ऐसे
	p, q, r, s ज्ञात कीजिए कि त्रिभुज का क्षेत्रफल $5\sqrt{6}$ है जहाँ $\vec{a} = p\hat{i} + q\hat{j} + r\hat{k},$ $\vec{b} = s\hat{i} + 3\hat{j} + 4\hat{k}$ तथा $\vec{c} = 3\hat{i} + \hat{j} - 2\hat{k}$. है।
	$\dot{b} = s\hat{i} + 3\hat{j} + 4\hat{k}$ तथा $\vec{c} = 3\hat{i} + \hat{j} - 2\hat{k}$. है।
Q.21	Find the coordinates of the point where the line through the points $A(3,4,1)$ and $B(5,1,6)$ crosses the XZ plane. Also find the angle which this line makes with the XZ

Visit us at www.agyatgupta.com

plane.

उस बिंदु के निर्देशांक कीजिए जहाँ पर बिंदुओं A(3,4,1) और B(5,1,6) से होकर जाने वाली रेखा XZ समतल को प्रतिच्छेद करती है। वह कोण भी ज्ञात कीजिए जो यह रेखा XZ समतल के साथ बनाती है।

or अथवा

Find the equation of plane passing through the points A (3, 2, 1), B (4, 2, -2) and C (6, 5, -1) and hence find the value of $^{\lambda}$ for which A (3, 2, 1), B (4, 2, -2), C (6, 5, -1) and D $(^{\lambda}, 5, 5)$ are coplanar.

बिंदुओं A (3,2,1), B (4,2,-2) तथा C (6,5,-1) से होकर जाने वाले समतल का समीकरण ज्ञात कीजिए। अतः λ का मान ज्ञात कीजिए जिसके लिए A (3,2,1) , B (4, 2,-2), C (6,5,-1) तथा $D(\lambda$ 5,5) समतलीय हों।

Q.22 A bad contains 4 balls. Two balls are drawn at random (without replacement) and are found to be white. What is the probability that all balls in the bag are white? एक पासा फेंकने के खेल मे एक व्यक्ति रू. 5 जीतता है यदि उसे 4 से बड़ी संख्या प्राप्त होती है अन्यथा वह रू.1 हार जाता है। वह व्यक्ति 3 बार पासा फेंकने का निर्णय लेता है लेकिन चार से बड़ी संख्या प्राप्त करने पर खेल छोड़ देता है। मनुष्य द्वारा जीती / हारी जाने वाली राशि की प्रत्याशा ज्ञात कीजिए।

or अथवा

In a game, a man wins Rs. 5 for getting a number greater than 4 and loses Rs. 1 otherwise, when a fair die is thrown. The man decided to throw a die thrice but to quit as and when he gets a number greater than 4. Find the expected value of the amount he wins/ loses.

एक थैले में 4 गेंदे है। यादृच्छया दो गेंदे बिना प्रतिस्थापना के निकाली गई और दोनों सफेद पाई गई। इसकी क्या प्रायिकता है थैले में सभी गेंदे सफेद है?

Q.23 Three numbers are selected at random (without replacement) from first six positive integers. If X denotes the smallest of the three numbers obtained, find the probability distribution of X. Also find the mean and variance of the distribution. प्रथम छः धन पूर्णांको मे से तीन संख्याएं यादृच्छया (बिना प्रतिस्थापना) चुनी गई । मान लें X तीनों संख्याओं मे से सबसे छोटी संख्या को व्यक्त करता है, तो X का प्रायिकता

बंटन ज्ञात कीजिए । बंटन का माध्य तथा प्रसरण भी ज्ञात कीजिए

PART - D (Question 24 to 29 carry 6 mark each.)

Visit us at www.agyatgupta.com

Q.24 Let $f:N\to N$ be a function defined as $f(x)=9x^2+6x-5$. Show that $f:N\to S$, where S is the range of f, is invertible. Find the inverse of f and hence find $f^{-1}(43)$ and $f^{-1}(163)$ मान लीजिए कि $f:N\to N$, $f(x)=9x^2+6x-5$ द्वारा परिभाषित एक फलन है। सिद्ध कीजिए कि $f:N\to S$, जहाँ S, f का परिसर है, व्युत्कमणीय है। f का प्रतिलोभ ज्ञात कीजिए । अतः $f^{-1}(43)$ तथा $f^{-1}(163)$ ज्ञात कीजिए।

Show that the binary operation * on $A=R-\{-1\}$ defined as a*b=a+b+ab for all $a, b \in A$ is commutative and associative on A. Also find the identity element of * in A and prove that every element of A is invertible. दर्शाइए कि एक द्विआधारी संक्रिया जो $A=R-\{-1\}$ पर सभी $a,b \in A$ के लिए a*b=a+b+ab द्वारा परिभाषित है कम विनिमेय तथा साहर्चय है। A में * का तत्समक

or अथवा

Q.25 Using properties of determinants, prove : सारिणकों के गुण – धर्मों का प्रयोग करते हुए सिद्ध कीजिए कि : $\begin{vmatrix} -bc & b^2 + bc & c^2 + bc \\ a^2 + ac & -ac & c^2 + ac \\ a^2 + ab & b^2 + ab & -ab \end{vmatrix} = (bc + ca + ab)^3 \cdot$

अवयक ज्ञात कीजिए तथा सिद्ध कीजिए कि A का प्रत्येक व्यूत्क्रमणीय है।

or अथवा

Using properties of determinates, show that $\triangle ABC$ is isosceles if: सारणिकों के गुणधर्मी का प्रयाग कर सिद्ध कीजिए कि $\triangle ABC$ एक समद्विबाहु त्रिभुज है यदि

$$\begin{vmatrix}
1 & 1 & 1 & 1 \\
1 + \cos A & 1 + \cos B & 1 + \cos C \\
\cos^2 A + \cos A & \cos^2 B + \cos B & \cos^2 C + \cos C
\end{vmatrix} = 0$$

Q.26 Evaluate :मान ज्ञात कीजिए : $\int_0^{\pi} \sqrt{1 + 4 \sin^2 \frac{x}{2} - 4 \sin \frac{x}{2}} dx$ or अथवा

Evaluate :मान ज्ञात कीजिए : $\int_{-\pi}^{\pi} \frac{2x(1+\sin x)}{1+\cos^2 x} dx.$

Visit us at www.agyatgupta.com

- **Q.27** Using integration find the area of the region $\{(x,y): y^2 \le 6ax \text{ and } x^2 + y^2 \le 16a^2\}$ समाकलनों का प्रयोग करके क्षेत्र $\{(x,y): y^2 \le 6ax \text{ and } x^2 + y^2 \le 16a^2\}$ का क्षेत्रफल ज्ञात कीजिए ।
- Find the equation of the plane containing two parallel lines $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z}{3}$ and $\frac{x}{4} = \frac{y-2}{-2} = \frac{z+1}{6}$. Also, find if the plane thus obtained contains the line $\frac{x-2}{3} = \frac{y-1}{1} = \frac{z-2}{5}$ or not.

दो समांतर रेखाओं $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z}{3}$ तथा $\frac{x}{4} = \frac{y-2}{-2} = \frac{z+1}{6}$ को अंतर्विष्ट करने वाले समतल का समीकरण ज्ञात कीजिए । अतः दर्शाइए कि क्या प्राप्त समतल, रेखा $\frac{x-2}{3} = \frac{y-1}{1} = \frac{z-2}{5}$ को अंतर्विष्ट करता है अथवा नहीं ?

Q.29 There are two types of fertilisers 'A' and 'B'. 'A' consists of 12% nitrogen and 5% phosphoric acid whereas 'B' consists of 4% nitrogen and 5% phosphoric acid. After testing the soil conditions, farmer finds that he needs at least 12 kg of nitrogen and 12 kg of phosphoric acid for his crops. If 'A' costs Rs. 10 per kg and 'B' cost Rs. 8 per kg then graphically determine how much of each type of fertiliser should be used so that nutrient requirements are met at a minimum cost. दो प्रकार के खाद 'A' और 'B' है। 'A' में 12% नाइट्रोजन और 5% फास्फोरिक एसिड है जबिक 'B' में 4% नाइट्रोजन और 5% फास्फोरिक एसिड है। मिटटी के स्थिति परीक्षण के बाद किसान को ज्ञात हुआ कि उसे फसल के लिये कम से कम 12 कि.ग्रा. नाइट्रोजन और 12 कि.ग्रा. फास्फोरिक एसिड की आवश्यकता है। यदि 'A' का मूल्य रू. 10 प्रति कि.ग्रा. और 'B' का मूल्य रू. 8 प्रति कि.ग्रा. है तो आलेख द्वारा परिकलित कीजिए कि उसे प्रत्येक प्रकार की कितनी खाद प्रयोग करनी चाहिए कि कम से कम कीमत मे पोषण तत्वों की आवश्यकता पूरी हो जाए।
