

CALSS –X GUESS PAPER MATHS

General Instructions:

- 1. All questions are compulsory.
- 2. The question paper consists of 34 questions divided into four sections A, B, C and D. Section A comprises of 10 questions of 1 mark each. Section B comprises of 8 questions of 2 marks each. Section C comprises of 10 questions of 3 marks each and Section D comprises of 6 questions of 4 marks each.
- 3. Question numbers 1 to 10 in Section A are multiple choice questions where you are to select one correct option out of the given four.
- 4. There is no overall choice. However internal choice has been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four marks each. You have to attempt only one of the alternatives in all such questions.
- 5. Use of calculators is not permitted.
- 6. An additional 15 minutes time has been allotted to read this question paper only.

Section - A

Q.1 Fundamental theorem of Arithmetic is

- (a) Every composite number can be factorized as a product of numbers and this factorization is unique, apart from the order in which the factors occur.
- (b) Every composite number can be factorized as a product of primes and this factorization is unique, apart from the order in which the prime factors occur.
- (c) Every number can be factorized as a product of numbers and this factorization is unique, apart from the order in which the factors occur.

CBSEGuess.com

(d) Every number can be factorized as a product of primes and this factorization is unique, apart from the order in which the prime factors occur.

Q.2 Euclid's Division Lemma states that if a and b are any two positive integers, then there exist unique integers q and r such that

(a)
$$a = bq + r, 0 < r \le b$$

(b)
$$a = bq + r, 0 \le q < b$$

(c)
$$a = bq + r, 0 \le r < b$$

(d)
$$a = bq + r, 0 < q \le b$$

Q.3 Maximum numbers of real zeroes can $x^3 - 27$ have is

- (a) 1
- (b) 3
- (c) 2
- (d) 4

Q.4 Which of the following pairs of equations is inconsistent

(a)
$$3x - 2y = 8$$

(b)
$$3x - y = 8$$

(c)
$$lx - y = m$$

(d)
$$5x - y = 10$$

$$2x + 3y = 1$$

$$x - y/3 = 3$$

$$x + my = 1$$

$$10x - 2y = 20$$

Q.5 The perimeters of two triangles PQR and LMN are 38 cm and 24 cm, if LM \neq 10 cm, then PQ is

- (a) 15 cm
- (b) 16 cm
- (c) 12 cm
- (d) 18 cm

Q.6 If $x = a \cos\theta$ and $y = b\sin\theta$, then $b^2x^2 + a^2y^2$ is

(a) 1

- (b) ab
- (c) a^2b^2
- (d) $b^2 + a^2$

 $Q.7 \qquad \frac{2 \tan 30^{\circ}}{1 + \tan^2 30^{\circ}} =$

- (a) sin60°
- (b) $\cos 60^{\circ}$
- (c) tan60°
- (d) sin30°

Q.8 If $\sin \theta + \cos ec\theta = 2$, then $\sin^8 \theta + \csc^8 \theta =$

(a) 1

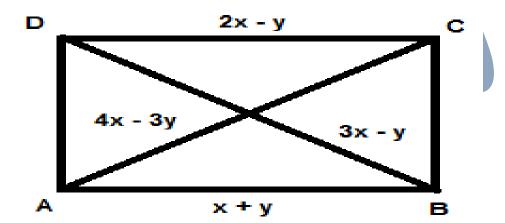
(b) 2

(c) 8

(d) 16

Q.9 If $\sqrt{2} \sin(60^{\circ} - \alpha) = 1$, then α is

- (a) 45°
- (b) 15°
- (c) 60°
- (d) 30°



- **Q.10** Which of the following is based on all observation of the data?
 - (a) Mean
- (b) Median
- (c) Mode
- (d) Mode and Median

SECTION - B

- Q.11 What is the smallest number which when divided by 35, 56 and 91, leaves the remainder 7 in each case?
- Q.12 What must be subtracted from $8x^4 + 14x^3 2x^2 + 7x 8$ so that the resulting polynomial is exactly divisible by $4x^2 + 3x 2$?
- Q.13 The sides of and diagonals of rectangle shown in the figure are in centimeters. Find x and y. The side AB = x + y, CD = 2x y, diagonal AC = 4x 3y and diagonal BD = 3x y

- Q.14 The sum of the deviations of a set of values $x_1, x_2, x_3, \dots, x_n$ measured from 50 is -10 and the sum of deviations of the values from 46 is 70. Find the value of n and the mean.
- Q.15 If $7 \sin^2 \theta + 3\cos^2 \theta = 4$, find the value of $\sec \theta + \csc \theta$ (0° < θ < 90°)

If
$$\frac{\sin^2 \theta}{\tan^2 \theta - \sin^2 \theta} = 3$$
, then find the value of $\frac{1 + \tan \theta}{1 - \tan \theta}$

Q.16 Prove that the diagonals of trapezium divide each other proportionally.

- **Q.17** In an equilateral triangle, prove that the square of one side is equal to four times the square of one of its altitudes.
- **Q.18** If the mean of the following distribution is 27, find the value of p.

Class	0 - 10	10 - 20	20 - 30	30 – 40	40 - 50
Frequency	8	p	12	13	10

SECTION - C

- Q.19 If $\sin\theta + \sin^2\theta + \sin^3\theta = 1$, prove that $\cos^6\theta 4\cos^4\theta + 8\cos^2\theta = 4$
- Q.20 If $\cos ec\theta \sin \theta = m$, $\sec \theta \cos \theta = n$ prove that $m^2n^2(m^2 + n^2 + 3) = 1$

OR

If $x \sin^3 \theta + y \cos^3 \theta = \sin \theta \cos \theta$ and $x \sin \theta = y \cos \theta$, prove that $x^2 + y^2 = 1$.

- **Q.21** A point D is on side BC of an equilateral triangle ABC such that $DC = \frac{1}{4}BC$. Prove that $AD^2 = 13 CD^2$
- Q.22 Sides AB and BC and median AD of a triangle ABC are respectively proportional to the sides PQ and QR and median PM of triangle PQR. Show that triangles are similar.
- Q.23 A train over takes two persons who are walking in the same direction in which the train is going at the speed of 2 km/hr and 4 km/hr and passes them completely in 9 and 10 seconds respectively. Find the length and speed of the train.

OR

Solve:
$$\frac{b^2}{a}x - \frac{a^2}{b}y = ab(a+b),$$
 $b^2x - a^2y = 2a^2b^2$

Q.24 If the median is 28.5. Find the values of x and y.

C.I	0 – 10	10 - 20	20 – 30	30 – 40	40 – 50	50 - 60	Total
frequency	5	X	20	15	y	5	60

- **Q.25** Prove that $2+3\sqrt{2}$ is irrational.
- Q.26 The traffic lights at three different road crossings change after every 48 seconds, 72 seconds and 108 seconds. If they change simultaneously at 7 a.m. after what time will they change again simultaneously?

OR

Prove that one of every three consecutive positive integers is divisible by 3.

- Q.27 If α and β are the zeros of the quadratic polynomial $f(x) = x^2 x 4$, find the value of $\frac{1}{\alpha} + \frac{1}{\beta} \alpha\beta$.
- Q.28 Find the mode of the following distribution:

Age (in years)	5 – 15	15 - 25	25	35	35 – 45	45 – 55	55 – 65
No. of students	6	11	21		23	14	5

SECTION - D

Q.29 Evaluate

$$\frac{\sec^2 54 - \cot^2 36}{\csc^2 57 - \tan^2 33} + \sin^2 23 + \sin^2 36 + \sin^2 43 + \sin^2 47 + \sin^2 54 + \sin^2 67 + \tan 5 \sin 10 \tan 30 \sec 80 \tan 85$$

Q.30 If $\sec \theta + \tan \theta = x$, prove that $\sec \theta - \tan \theta = \frac{1}{x}$ and prove that $\sin \theta = \frac{x^2 - 1}{x^2 + 1}$

OR

If $a\sin^3 x + b\cos^3 x = \sin x \cos x$ and $a\sin x - b\cos x = 0$ prove that $a^2 + b^2 = 1$

Q.31 Prove that ratio of area of two similar triangles is equal to ratio of square of their corresponding sides.

OR

State and prove Pythagoras Theorem.

Q.32 Obtain all zeros of
$$3x^4 + 6x^3 - 2x^2 - 10x - 5$$
 if two of its zeros are $\sqrt{\frac{5}{3}}$, $-\sqrt{\frac{5}{3}}$

- Q.33 Draw the graph of the equations 2x + y 6 = 0; 4x 2y 4 = 0. Also shade the triangle formed the lines and x = 0. Also find the area of the shaded triangle.
- **Q.34** Draw more than and less than ogive and hence find the median.

Group	0 – 10	10 – 20	20 – 30	30 – 40	40 -	- 50	50 – 60	60 – 70
Frequency	4	4	7	10	12		8	5

From: DEEPAK DUTTA { MRA DAV Sr. Sec. P School, Solan}

09816055445

E-mail: dd_duttamath @yahoo.com