The state of the s

Agyat gupta (TARGET MATHEMATICS)

Resi.: D-79 Vasant Vihar; Office: 89-Laxmi bai colony Ph.: 410685@,2630601(O)Mobile: 9425109601; 9425110860

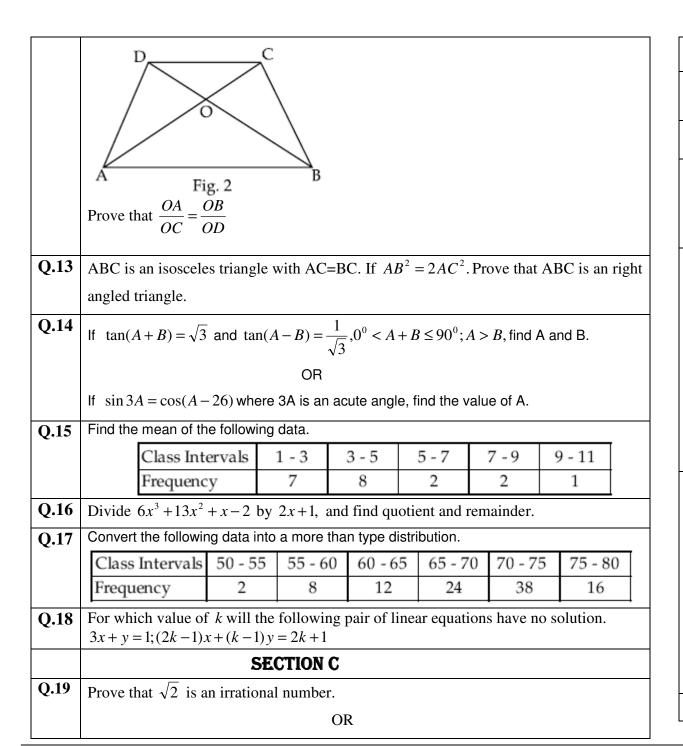
5®,2630601(O)Mobile : 9425109601; 9425110 PREMIER INSTITUTE for X , XI & XII .

General Instructions:

- 1. All questions are compulsory.
- 2. The question paper consists of 34 questions divided into four sections A,B,C and D. Section A comprises of 10 question of 1 mark each. Section B comprises of 8 questions of 2 marks each. Section C comprises of 10 questions of 3 marks each and Section D comprises of 6 questions of 4 marks each.
- 3. Question numbers 1 to 10 in Sections A are multiple choice questions where you are to select one correct option out of the given four.
- 4. There is no overall choice. However, internal choice has been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four mark each. You have to attempt only one If the alternatives in all such questions.
- 5. Use of calculator is not permitted.

SET 'Q' CLASS X 2011-2012 (SA-1)

Time: 3 Hours 15 Minutes Maximum Marks: 80


SECTION	A
----------------	---

- Q.1 The product of the HCF and LCM of the smallest prime number and the smallest composite number is:

 (A) 2 (B) 4 (C) 6 (D) 8
- **Q.2** If $\sin \theta = \cos \theta$, then value of θ is: (a) 0^{0} (b) 45^{0} (c) 30^{0} (d) 90^{0}
- Q.3 The quadratic polynomial whose sum of zeroes is +3 and product of zeroes is +2 is:
 - (a) $x^2 + 3x 2$ (b) $x^2 2x + 3$ (c) $x^2 3x + 2$ (d) $x^2 3x 2$
- Q.4 If $\cot A = \frac{12}{5}$, then the value of $(\sin A + \cos A) \times \cos ecA$ is:
 - (a) $\frac{13}{5}$ (b) $\frac{17}{5}$ (c) $\frac{14}{5}$ (d) 1
- Q.5 The number of solutions of the pair of linear equations x+2y-8=0 and 2x+4y=16 have :

 (a) 0 (b) 1 (c) Infinitely many (d) None

Q.6	$9\sec^2\theta - 9\tan^2\theta$ is equal to:					
	(a) 1 (b) -1 (c) 9 (d) -9					
Q.7	If n is any natural number, then which of the following expressions ends with 0 :					
	(a) $(3\times2)^n$ (b) $(4\times3)^n$ (c) $(2\times5)^n$ (d) $(6\times2)^n$					
Q.8	$\cos 1^{0}, \cos 2^{0}, \cos 3^{0}\cos 180^{0}$ is equal to :					
	(a) 1 (b) 0 (c) ½ (d) -1					
Q.9	Which measure of central tendency is given by the <i>x</i> co-ordinate of the point of intersection of the more than Ogive and less than Ogive. (A) Mean (B) Median (C) Mode (D) All the above					
Q.10	In the figure – 1, $PQllBC$ and $AP:PB=1:2$					
	Find $\frac{ar(\Delta APQ)}{ar(\Delta ABC)}$					
	P Q Fig. 1 (A) 1:4 (B) 4:1 (C) 1:9 (D) 2:9					
	SECTION B					
Q.11	Using Euclid.s division algorithm, find the HCF of 135 and 225.					
Q.12	In the given figure-2, ABCD is a trapezium in which <i>ABllDC</i> . The diagonals AC and DB intersects at O.					

	Prove that $\sqrt{3} + \sqrt{5}$ is an irrational number.
Q.20	Show that the square of any positive odd integer is of the form 8m + 1, for some integer
	m.
Q.21	Find the zeroes of the quadratic polynomial $x^2 + 5x + 6$ and verify the relationship between the zeroes and the coefficient.
Q.22	Solve for x and y: $(a-b)x + (a+b)y = a^2 - 2ab - b & (a+b)(x+y) = a^2 + b^2$ OR
	The sum of the digits of a two digit number is 12. The number obtained by interchanging the two digits exceeds the given number by 18. Find the number.
Q.23	In the figure-3, XYllAC and XY divides triangular region ABC into two
	parts equal in area. Find the ratio of $\frac{AX}{XB}$.
Q.24	In the figure - 4, if $AD \perp BC$. Prove that $AB^2 + CD^2 = BD^2 + AC^2$ $B \qquad \qquad$
Q.25	Evaluate :

	$Sin(50^{0} + \theta) - \cos(40^{0} - \theta) + \tan 1^{0} \tan 10^{0} \tan 20^{0} \tan 70^{0} \tan 80^{0} \tan 80^{0} + \sec(90 - \theta).$								
	$\cos ec\theta - \tan(90 - \theta).\cot\theta$								
0.26									
Q.26	Prove that $(\sin \theta + \cos ec \theta)^2 + (\cos \theta + \sec \theta)^2 = 7 + \tan^2 \theta + \cot^2 \theta$								
	OR								
	Prove that $(\cos ec \theta - \sin \theta)(\sec \theta - \cos \theta) = \frac{1}{\tan \theta + \cot \theta}$								
Q.27	7 Find the mode of the following data .								
	Class Intervals	25 - 35	35 - 45	45 - 55	55 - 65	65 - 75	75 - 85		
	Frequency	7	31	33	17	11	1		
Q.28	Find the median of the following data.								
	Class Intervals	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	Total		
	Frequency	8	16	36	34	6	100		
	SECTION D								
Q.29	Prove that the line drawn parallel to one side of a triangle to intersect the other two sides at distinct points, the other two sides are divided in the same ratio. OR Prove that in a right triangle, the square of the hypotenuse is equal to the sum of the squares								
	of other two sides.								
Q.30	Find all the zeroes		ynomial x^4	$+x^3-9x^2$	-3x + 18 i	f it is given	that two of its		
0.21	zeroes are $-\sqrt{3}$ a								
Q.31	Show that $\frac{\sin\theta - 2\sin^3\theta}{2\cos^2\theta - \cos\theta} = \tan\theta$ OB								
	Prove that $\sin A(1)$	$+ \tan A) \cos A$	os $A(1+\cot$	$A) = \sec A$	+ cos ecA				
Q.32	Prove that $\frac{\tan \theta + \sec \theta - 1}{\tan \theta - \sec \theta + 1} = \frac{1 + \sin \theta}{\cos \theta}$								

	and x-axis. Find the area of the shaded region.							
Q.34	Convert the following data to a less than type distribution and draw its Ogive. Also find median from the graph.							
	Class Interval	100 - 120	120 - 140	140 - 160	160 - 180	180 - 200		
	Frequency	12	14	8	6	10		
	THEORY IS BLIND WITHOUT PRACTICAL.							
	KNOWLEDGE IS USELESS WITHOUT APPLICATION.							