\square

CLASS XI MATHS

TOPIC- BINOMIAL THEOREM

Q. 1 Prove that there is no term involving x^{6} in the expansion of $\left.\left(2 x^{2}-\frac{3}{x}\right)^{4}\right)$ Q. 2 Find the coefficient of x^{5} in the expansion of the product $(1+2 x)^{5}(1-x)^{7}$.

Q3. If the coefficient of ' 4 'th and ' 13 'th terms in the expansion of $\left[x^{2}+(1 / x)\right]^{n}$ be equal, then find the term which independent of ' x '.
Q. 4 Show that the ratio of the coefficient of x^{10} in $\left(1-x^{2}\right)^{10}$ and the term independent of x in $\left(x-\frac{2}{x}\right)^{10}$ is (1:32).
Q. 5 Using binomial theorem prove that $\left(3^{2 n+2}-8 n+9\right)$ is divisible by 64 , where n is a positive integer.

Q 6. Let ' n ' be a positive integer. If the coefficients of second, third and fourth terms in $(1+x)^{2}$ are in arithmetic progression, then find the value of ' n '.

Q 7. The $3^{\text {rd }}, 4^{\text {th }}$ and $5^{\text {th }}$ terms in the expansion of $(\mathrm{x}+\mathrm{a})^{\text {n }}$ are respectively ' 84 ', ' 280 ' and ' 560 ', find the value of ' x ', ' a ' and ' n '.

Q 8. Find the coefficient of x^{50} in $(1+x)^{41}\left(1-x+x^{2}\right)^{40}$.
Q. 9 Find The term independent of x in the expansion of:
(i) $\left(\sqrt{x}+\frac{1}{3 x^{2}}\right)^{10}(i i)\left(\frac{3 x^{2}}{2}-\frac{1}{3 x}\right)^{9}$

Q 10. Find the coefficient of x^{r} in the expansion of $[\mathrm{x}+(1 / \mathrm{x})]^{\mathrm{n}}$, if it occurs.
cbse

Q 11. If the coefficients of $(2 r+1)$ th term and $(r+2)$ th term in the expansion of $(1+x)^{43}$ are equal, find ' r '.
Q. 12 If in the expansion of $(1+x)^{m}(1-x)^{n}$, the coefficients of ' x ' and ' x^{2} ' are ' 3 ' and ' -6 ' res. Find the value of ' m '.
Q. 13 If third term in the expansion of $\left(x^{2}+x^{\log x}\right)^{5}$ is $10,00,000$. Find the value of ' x '.
Q. 14 Prove that the ration of the coefficient of x^{10} in $\left(1-x^{2}\right)^{10}$ and the term independent of ' x ' in $[\mathrm{x}-(2 / \mathrm{x})]^{10}$ is $1: 32$.
Q. 15 Find the coefficient of ' x ' in the expansion of $\left(1-2 x^{3}+x^{5}\right)[1+(1 / x)]^{8}$
Q. 16 Show that the middle - term in the expansion of $(1+x)^{2 \mathrm{n}}$ is

$$
\text { 1. 3. } 5-----(2 n-1) /(n!) \cdot 2^{n} x^{n},{ }^{\circ} n \text { being a positive integer. }
$$

Q. 17 If P be the sum of odd terms and Q that of even terms in the expansion of $(x+a)^{n}$,Prove that
(i) $\left(P^{2}-Q^{2}\right)=\left(x^{2}-a^{2}\right)^{n}$;
(ii)

$$
4 P Q=\left[(x+a)^{2 n}-(x-a)^{2 n}\right] ;
$$

(iii) $2\left(P^{2}+Q^{2}\right)=\left((x+a)^{2 n}-(x-a)^{2 n}\right.$;

Q18.: Show that that the term independent of ' x ' in the expansion of

$$
[\mathrm{x}+(1 / \mathrm{x})]^{2 \mathrm{n}} \text { is } \quad[1.3 \cdot 5 .---(2 \mathrm{n}-1) /(\mathrm{n}!)] 2^{\mathrm{n}}
$$

Q19. The $6^{\text {th }}$ term in the expansion of $\left[\left(1 / x^{8 / 3}\right)+x^{2} \log _{10}{ }^{x}\right]^{8}$ is 5600 . Prove that $x=10$.

$$
=(4 n!) /[(4 / 3) n-r]!\times[(4 / 3)(2 n+r)]!
$$

close $\delta_{\text {guess }}$	

Q 20.: Prove that the coefficient of the term independent of ' y ' in the expansion of

$$
\left[(y+1) /\left(y^{2 / 3}-y^{1 / 3}+1\right)-\quad(y-1) /\left(y-y^{1 / 2}\right)\right]^{10} \text { is } 210
$$

BY-

S.K.DADHICH (PGT)

MOBILE 9829138071/9414255596
S.R.STUDY POINT

B:O:ADARSH NAGAR,H:O:JOHARI BAZAR
JAIPUR-3.

