SOME IMPORTANT QUESTIONS (CLASS XII) BY RAJPUT SIR

(a)
$$\int \cos^4 2x \, dx$$
 (b) $\int \frac{\sqrt{x^2 + 1} \left[\log \left(x^2 + 1 \right) - 2 \log x \right]}{x^4} \, dx$ (c) $\int \frac{1}{x^2 \left(x^4 + 1 \right)^{3/4}} \, dx$ (d) $\int \frac{\left(x^2 + 1 \right) e^x}{\left(x + 1 \right)^2} \, dx$ (e) $\int \frac{x^2}{\left(x \sin x + \cos x \right)^2} \, dx$ (f) $\int \frac{\sin(x - \alpha)}{\sin(x - \beta)} \, dx$ (g) $\int \frac{1}{x \cdot \left(x^5 + 1 \right)} \, dx$ (h) $\int \frac{\sin^{-1} \sqrt{x} - \cos^{-1} \sqrt{x}}{\sin^{-1} \sqrt{x} + \cos^{-1} \sqrt{x}} \, dx$ (i) $\int \frac{x}{\sqrt{7 - 6x - x^2}} \, dx$

$$\text{(j)} \int \frac{1}{\cos(x-a)\cos(x-b)} \ \mathrm{dx} \qquad \text{(k)} \int e^x \! \left(\frac{1+\sin x}{1+\cos x} \right) \mathrm{dx} \qquad \text{(l)} \int \frac{1}{(x^2+1)(x^2+4)} dx \qquad \text{(m)} \int \sqrt{\tan x} + \sqrt{\cot x} \ \mathrm{dx}$$

$$\text{(n)} \int \cos x. \cos 2x. \cos 4x. dx \qquad \text{(o)} \int \frac{1}{\sqrt{\sin^3 x. \sin(x+\alpha)}}. dx \quad \text{(p)} \int \frac{3x+5}{x^3-x^2-x+1} \, \mathrm{dx} \quad \text{(q)} \int (\log(\log x) + \frac{1}{(\log x)^2}). dx$$

2. Evaluate the following as the limit of a sum. (a)
$$\int_{1}^{3} (3x^{2} + x) dx$$
 (b) $\int_{0}^{2} (x + e^{2x}) dx$ By Rajput sir

3. Evaluate the following: (i)
$$\int_{0}^{\pi/4} \log(1 + \tan x) dx$$
 (ii) $\int_{-\pi/2}^{\pi/2} \sin|x| + \cos|x| dx$ (iii) $\int_{0}^{\pi/2} \log\sin x dx$

(iv)
$$\int_{0}^{\pi/2} \frac{x \sin x \cos x dx}{\sin^4 x + \cos^4 x}$$
 (v) $\int_{-1}^{3/2} |x \sin \pi x| dx$ (vi) $\int_{0}^{\pi/2} \frac{x}{\sin x + \cos x} dx$ (vii) $\int_{0}^{\pi} \frac{x dx}{a^2 \cos^2 x + b^2 \sin^2 x}$

(viii)
$$\int_{\pi/6}^{\pi/3} \frac{1}{1+\sqrt{\cot x}} dx \quad \text{(ix)} \int_{1}^{4} (|x-1|+|x-2|+|x-3|) dx \quad \text{(x)} \int_{-1}^{2} |x^3-x| dx \quad \text{(xi)} \int_{0}^{1} \tan^{-1} \left(\frac{2x-1}{1+x-x^2}\right) dx$$

- 4. Find the area the first quadrant enclosed by the x-axis, the line $x = \sqrt{3}y$ and the $x^2 + y^2 = 4$.
- 5. Find the area of the region enclosed by two circles and $x^2 + (y-2)^2 = 4 \cdot x^2 + y^2 = 4$.
- 6. Using integration find the area of Δ ABC, whose vertices are A(2, 0) B(4, 5) and C(6, 3).
- 7. Find the area above x-axis and included in circle $x^2 + y^2 = 8x$ and the parabola $y^2 = 4x$.
- 8. Find the area of the region $\{(x, y): y^2 \le 4x, 4x^2 + 4y^2 \le 9\}$. By Rajput sir
- 9. Find the area of the circle $x^2 + y^2 = 16$ which is exterior to the parabola $y^2 = 6x$.

Differential equations

1. Form the family of differential equation represented by the curve

(i)
$$y = ae^{3x} + be^{-2x}$$
 (ii) $y = e^{x} (a \sin x + b \cos x)$ (iii) $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$

- 2. Form the differential equation represented circle passing through origin and center lies on x-axis.
- 3. Solve the differential equations:

(i).
$$\sec^2 x \tan y dx + \sec^2 y \tan x dy = 0$$
 (ii) $\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2$ (iii) $x - y = \sqrt{x^2 + y^2} dx$
(iv) $x \cos \left(\frac{y}{x}\right) = y \cos \left(\frac{y}{x}\right) + x$ (vi) $2 e^{\frac{x}{y}} dx + \left(y - 2 e^{\frac{x}{y}}\right) dy = 0$

(iv)
$$x \cos\left(\frac{y}{x}\right) \frac{dy}{dx} = y \cos\left(\frac{y}{x}\right) + x$$
 (vi) $2 y e^{\frac{x}{y}} dx + \left(y - 2 x e^{\frac{x}{y}}\right) dy = 0$

- 4. Solve the differential equt: (i) $x(1 + y^2)dx y(1 + x^2)dy = 0$. y(1) = 0 (ii) $(x^2 + y^2) dx + xy dy = 0$, y(1) = 1
- 5. At any point on the curve the slope of tangent is twice the slope of the line joining the point of contact to the point(-4,-3) find the equation of the curve passing through (-2,1). By Rajput sir