# DAV BORL PUBLIC SCHOOL, BINA

## **SAMPLE PAPER – I: 2019 – 20**

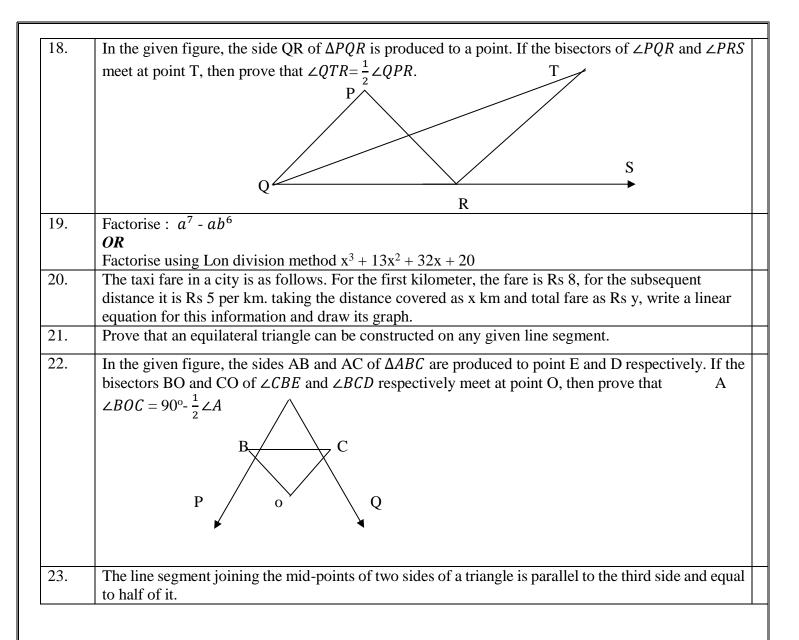
### **MATHEMATICS**

### CLASS – IX

### TIME ALLOWED: 3 HRS

**MAXIMUM MARKS: 80** 

# **General Instructions:-**


- > Please check that this question paper contains 30 questions and 3 printed pages.
- The question paper consists of four sections: A, B, C and D
- > Section A consists of 20 MCQ questions of 1 mark each.
- > Section B consists of 6 questions of 2 mark each.
- > Section C consists of 8 questions of 3 mark each.
- > Section D consists of 6 questions of 4 mark each.
- ➤ All questions are compulsory.
- > There is no overall choice. However, internal choices have been given in some questions.
- > Use of calculator is not permitted.

### SECTION – A

| 1.    | Choose and write the correct option in each of the following questions                         |
|-------|------------------------------------------------------------------------------------------------|
| (i)   | Decimal representation of a rational number can not be                                         |
|       | (a) Non-terminating (b) terminating                                                            |
|       | (c) non-terminating repeating (d) non-terminating non-repeating                                |
| (ii)  | Every irrational number is                                                                     |
|       | (a) A whole number (b) a natural number                                                        |
|       | (c) a real number (d) an integer                                                               |
| (iii) | Degree of the zero polynomial is                                                               |
|       | (a) 0 (b) 1 (c) any natural number (d) Not defined                                             |
| (iv)  | A cubic polynomial has                                                                         |
|       | (a) Two zeros (b) one zero (c) three zeros (d) at least three zeros                            |
| (v)   | The graph of the linear equation $2x + 3y = 6$ is a line which meets the x-axis at the points. |
|       | (a) $(0,2)$ (b) $(2,0)$ (c) $(0,3)$ (d) $(3,0)$                                                |
| (vi)  | The linear equation $5x = 2y$ has                                                              |
|       | (a) A unique solution (b) no solution (c) two solutions (d) infinitely many                    |
|       | solutions                                                                                      |

| (vii)   | Point (-3,5) lies in                                                                                     |
|---------|----------------------------------------------------------------------------------------------------------|
|         | (a) First quadrant (b) second quadrant (c) third quadrant (d) fourth quadrant                            |
| (viii)  | Abscissa of all the points on the y-axis is                                                              |
|         | (a) 1 (b) any number (c) 0 (d) 2                                                                         |
| (ix)    | Thales belongs to the country                                                                            |
|         | (a) Babylonia (b) Rome (c) Egypt (d) Greece                                                              |
| (x)     | If equal be subtracted from equals, the remainders are                                                   |
|         | (a) Equal (b) unequal (c) twice of each other (d) half of the other                                      |
| 2.      | Complete the following statements with appropriate word in the blank space                               |
| (xi)    | If a ray stand on a line, then the sum of two adjacent angles so formed is                               |
| (xii)   | If a transversal line intersect two parallel lines then each pair of interior angles on the same side of |
|         | the transversal is                                                                                       |
| (xiii)  | In a triangle, side opposite to larger angle is                                                          |
| (xiv)   | Diagonals of a rhombus bisect each other at angles.                                                      |
| (xv)    | Sum of exterior angles of a quadrilateral is                                                             |
| 3.      | The following questions consist of two statements- Assertion(A) and Reason(R). Answer these              |
|         | questions selecting the appropriate option given below:                                                  |
|         | (a) Both A and R are true and R is the correct explanation for A.                                        |
|         | (b) Both A and R are true and R is <b>not</b> the correct explanation for A.                             |
|         | (c) A is true but R is false                                                                             |
|         | (d) A is false but R is true                                                                             |
| (xvi)   | Assertion (A): In a parallelogram, the bisectors of any two consecutive angles intersect at right        |
|         | angle.                                                                                                   |
|         | <b>Reasons</b> (R): The diagonals of a parallelogram are equal if and only if it is a rectangle.         |
| (xvii)  | <b>Assertion</b> (A): Difference of any two sides of a triangle is less than the third side.             |
|         | <b>Reason</b> (R): Perimeter of a triangle is greater than the sum of its three medians.                 |
| (xviii) | <b>Assertion</b> (A): A triangle can have two obtuse angles.                                             |
|         | <b>Reasons</b> ( <b>R</b> ): The sum of angles of a triangle can not be more than 180°                   |
| (xix)   | Assertion (A): A circle is a rectilinear figure.                                                         |
|         | <b>Reasons</b> ( <b>R</b> ): A figure formed of line segments only is called a rectilinear figure.       |
| (xx)    | <b>Assertion</b> (A): The perpendicular distance of the point P(3,5) from x-axis is 5.                   |
|         | <b>Reason</b> ( $\mathbf{R}$ ): the perpendicular distance of the point $P(x,y)$ from x-axis is y.       |
|         | SECTION - B                                                                                              |

| 1   | TC (5) 1414 1 (5) 1704 1 (7) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                           |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.  | If $\sqrt{2} = 1.414$ and $\sqrt{3} = 1.734$ then find the value of $\frac{1}{\sqrt{3} + \sqrt{2}}$ by rationalizing the denominator.                                                                                        |
| 5.  | If $x + 1$ is a factor of $ax^3 + x^2 - 2x + 4a - 9$ , find the value of a.                                                                                                                                                  |
| 6.  | If $x = 0$ and $y = k$ is a solution of the equation $5x - 3y = 0$ , find the value of k.                                                                                                                                    |
| 7.  | Prove that every line segment has one and only one midpoint.                                                                                                                                                                 |
| 8.  | If the difference between two supplementary angles is 40°, then find the angles.                                                                                                                                             |
| 9.  | Prove that each angle of an equilateral triangle is 60°.                                                                                                                                                                     |
|     | SECTION -C                                                                                                                                                                                                                   |
| 10. | In the given figure, $POQ$ is a line. Ray $OR$ is perpendicular to line $PQ$ . $OS$ is another ray lying between rays $OP$ and $OR$ . Prove that $\angle ROS = \frac{1}{2} (\angle QOS - \angle POS)$                        |
|     | P O Q                                                                                                                                                                                                                        |
| 11. | Represent $\sqrt{7.3}$ on the number line. OR  Find the values of a and b from: $\frac{5+2\sqrt{3}}{7+4\sqrt{3}} = a + b\sqrt{3}$                                                                                            |
| 12. | Factorise: $\frac{r^3}{8} - \frac{s^3}{343} - \frac{t^3}{216} - \frac{1}{28} rst$                                                                                                                                            |
| 13. | D is a point on side BC of $\triangle ABC$ such that AD = AC. Show that AB > AD.                                                                                                                                             |
| 14. | ABC is a triangle, right-angled at C. A line through the mid-point M of the hypotenuse AB and parallel to BC intersects AC at D. Show that:  (a) D is the mid-point of AC  (b) MD $\perp$ AC  (c) CM = MA = $\frac{1}{2}$ AB |
| 15. | Prove that in a triangle other than an equilateral triangle, angle opposite the longest side is greater than $\frac{2}{3}$ of a right angle.                                                                                 |
| 16. | ABCD is a rhombus. Show that AC bisects $\angle A$ as well as $\angle C$ and diagonal BD bisects $\angle B$ as well as $\angle D$ .                                                                                          |
| 17. | Prove that if two parallel lines are intersected by a transversal, then bisectors of any two corresponding angles are equal.                                                                                                 |
|     | SCETION -D                                                                                                                                                                                                                   |
|     |                                                                                                                                                                                                                              |
|     |                                                                                                                                                                                                                              |
|     |                                                                                                                                                                                                                              |
|     |                                                                                                                                                                                                                              |

