Jhe Excellence Key...

CODE:2712-AG-PB-2

General Instructions :-

- (i) All Question are compulsory :
- (ii) This question paper contains **40** questions.
- (iii) Question 1-20in **PART-A** areObjective type question carrying 1 mark each.
- (iv) Question 21-26in **PART-B** are sort-answer type question carrying 2 mark each.
- (v) Question 27-34in **PART-**C are long-answer-I type question carrying 3 mark each.
- (vi) Question **35-40** in **PART-D** are long-answer-II type question carrying **4** mark each
- (vii) You have to attempt only one If the alternatives in all such questions.
- (viii) Use of calculator is not permitted.
- (ix) Please check that this question paper contains 8 printed pages.
- (x) Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.

PRE-BOARD EXAMINATION 2019 -20

Time : 3 Hours

Maximum Marks : 80

(M.Sc, B.Ed., M.Phill, P.I

पजियन क्रमांक

REG.NO:-TMC -D/79/89/36

CLASS – X

MATHEMATICS

PART - A (Question 1 to 20 carry 1 mark each.)

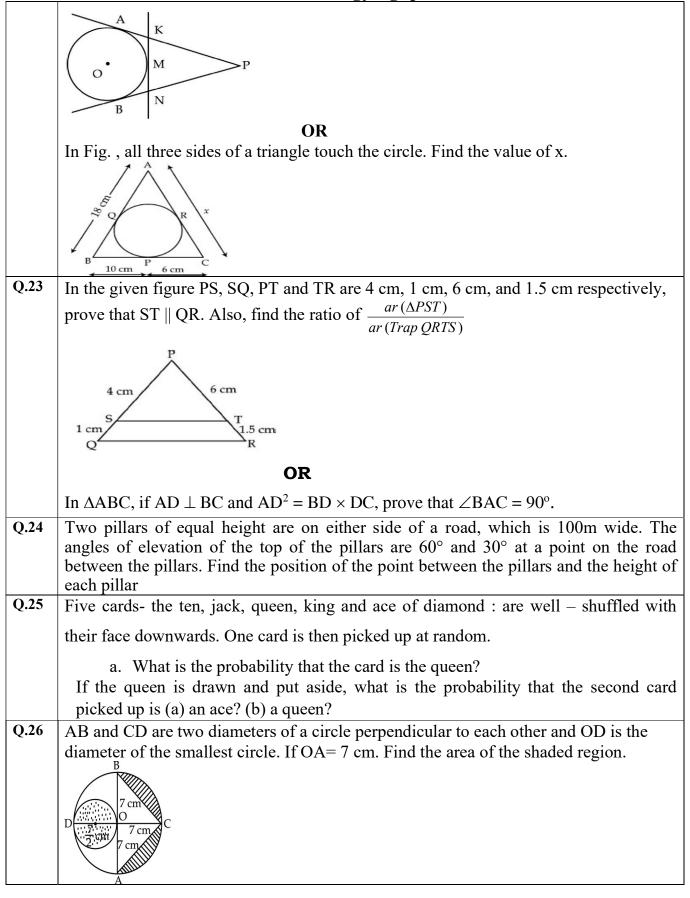
SECTION I : Single correct answer type

This section contain 10 multiple choice question . Each question has four choices (A) , (B) , (C) &(D) out of which ONLY ONE is correct .

Q.1	Given that HCF of (2520, 6600) =40 and LCM (2520, 6600) =252 * k, then the value of k is							
	(A)1650 (B) 1	1600 (C) 165 (D) 1625						
Q.2	The upper limit of the median class of the following distribution is :							
	Classes.	0-5	6-11	12-17	18-23	24-29		
	Frequency.	13	10	15	8	11		
	(A) 17 (B) 17.5 (C) 18 (D) 18.5							
Q.3	Find the largest number which divides 445, 572 and 699 leaving remainders 4, 5 and 6							
	respectively .(A) 61(B)62 (C) 63 (D) none							

TMC/D/79/89

Visit us at www.agyatgupta	a.com
----------------------------	-------


0.4	visit us at www.agyatgupta.com					
Q.4	The condition so that the pair of linear equations $kx + 3y + 1 = 0, 2x + y + 3 = 0$ has					
	exactly one solution.					
	(a) $k = 6$ (b) $k \neq 6$ (c) $k = 3$ (d) $k \neq 3$					
Q.5	In the given figure, value of x (in cm) is :					
	P					
	2.4 cm 3.2 cm					
	A/2 cm B					
	3.6 cm 4.8 cm					
	x cm					
	Q R					
	(a) 4 (b) 5 (c) 6 (d) 8					
Q.6	$\cos^2 40^{\circ} + \cos^2 50^{\circ}$					
	$\cos(40^{\circ} + \theta) - \sin(50^{\circ} - \theta) + \frac{\sin^2 40^{\circ} + \sin^2 50^{\circ}}{\sin^2 40^{\circ} + \sin^2 50^{\circ}} =$					
	(a) 1 (b) -1 (c) 2 (d) 0					
Q.7	$ \begin{array}{c} \cos(40^{\circ} + \theta) - \sin(50^{\circ} - \theta) + \frac{\cos^2 40^{\circ} + \cos^2 50^{\circ}}{\sin^2 40^{\circ} + \sin^2 50^{\circ}} = \\ \begin{array}{c} (a) \ 1 & (b) \ -1 & (c) \ 2 & (d) \ 0 \\ \end{array} = \\ \begin{array}{c} \text{The positive value of y for which the distance between the points P(2, -3) and Q(10, y)} \end{array} $					
	is 10 units, is (a)2 (B) 4 (C) 3 (D) 1					
Q.8	Distance between the points $(a \sin 15^\circ, 0)$ and B $(0, a \sin 75^\circ)$ is					
	(A) a^2 (B) $\sqrt{a^2}$ (C) $-a$ (D) a					
Q.9						
	In the given figure, if AD= $7\sqrt{3}$ m, then BC is equal to:					
0.10	B D C (A) 14 m (B) 27 m (C) 29 m (D) 28 m					
Q.10	A circle drawn with origin as the center passes through $\left(\frac{13}{2}, 0\right)$. The point which does					
	(2) . The point which does					
	not lie in the interior of the circle is:					
	$\begin{pmatrix} 3 \\ \end{pmatrix}$ $\begin{pmatrix} 7 \\ \end{pmatrix}$ $\begin{pmatrix} 1 \\ \end{pmatrix}$ $\begin{pmatrix} 5 \\ \end{pmatrix}$					
	$ (A) \left(-\frac{3}{4},1\right) (B) \left(2,\frac{7}{3}\right) (C) \left(5,-\frac{1}{2}\right) (D) \left(-6,\frac{5}{2}\right) $					
	$\frac{(A)(1-Q15)}{(Q11-Q15)}$ Answer the following questions					
0.11						
Q.11	What is the smallest number which when increased by 6 becomes divisible by 36, 63 and 108?					
Q.12	In the given figure, $\triangle PQR$ is right angled triangle right angled at Q. $DE \perp PR$. Prove					
Q.14	$\Delta PQR \sim \Delta PED$ and find the lengths of PE and DE if PD = 3, QD = 2cm and QR =					
	12cm.					
	<u> </u>					

TMC/D/79/89

2 P.T.O. **Target Mathematics by- Dr.Agyat Gupta** visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

Visit us at www.agyatgupta.com

	P 3 cm K ^E						
	D 2 cm						
	$Q = \frac{12 \text{ cm}}{R}$						
Q.13	A						
	(<u>30</u> >0)						
	In given figure, P if AP is a tangent to the circle with center O						
	such that $OP = 4$ cm and $\angle OPA = 30^{\circ}$, then AP is equal to:						
	4 cm (B) 2 cm (C) $2\sqrt{3}$ cm (D) $4\sqrt{3}$ cm						
Q.14	Which term of the A.P. 113, 108, 103, Is the first negative term?						
Q.15	If one zero of quadratic equation $(2k+3)x^2 + (3k-8)x + 2k + 1 = 0$ is reciprocal of the						
	other, then find the zeroes and value of k.						
Fill in the blanks (Q16 – Q20)							
Q.16	A toy is in the form of a right circular cylinder surmounted by a right circular cone as						
	shown in the figure. If $AD = DE = DC = 1$ cm, the volume of the toy in cm ³ is:						
	A						
	(A) $\frac{4}{3}\pi$ (B) $\frac{3}{4}\pi$ (C) 3π (D) 4π						
Q.17	If α, β are the roots of the equation $x^2 - 3x + 2 = 0$, then the equation whose roots are						
	$(\alpha + 1)_{and} (\beta + 1)_{is}$						
	or						
	Find a quadratic polynomial whose zeros are $3 + \sqrt{5}$ and $3 - \sqrt{5}$.						
Q.18	In a $\triangle ABC$, D and E are points on the sides AB and AC respectively such that						
	DE//BC .If AD =2.5cm,BD=3.0 cm and AE = 3.75 cm, then AC =						
Q.19	The sum of first 'n' terms of the series a, 3a, 5a, Is:						
Q.20	The set of all possible outcomes of a random experiment is called						
	(a) sample space (b) elementary events						
	(c) complementary events (d) favorable events						
Q.21	PART – B (Question 21 to 26 carry 2 mark each.) Le $7^5 \times 2^2 \times 5 + 2$ sector and the 2 level if a sector of the sector of t						
Q.22	Is $7^5 \times 3^2 \times 5 + 3$ a composite number? Justify your answer. PA and PB are tangents from point P to the circle with center O as shown in figure. At						
	point M, a tangent is drawn cutting PA at K and PB at N. prove that $KN = AK + BN$.						
TMC/D/7	79/89 3 P.T.O.						
	Target Mathematics by- Dr.Agyat Gupta						

TMC/D/79/89

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

P.T.O.

Visit us at www.agyatgupta.com

	visit us at www.agyatgupta.com
	OR ABCP is a quadrant of a circle of radius 14 cm. With AC as diameter a semicircle is A P P P C
	PART - C (Question 27 to 34 carry 3 mark each.)
Q.27	The length, breadth and height of a room are 8m 25cm, 6m 75cm and 4m 50 cm, respectively. Determine the longest rod which can measure the three dimensions of the room exactly.
	Determine the prime factors of 45470971.
Q.28	In an A.P. the sum of first n term is $\frac{3n^2}{2} + \frac{5n}{2}$, find its 25 th term.
Q.29	Solve the following system of equation graphically. $X - 2y = 5 \& 2x - 4y - 10 = 0$.
Q.30	The zeros of a quadratic polynomial $p(x) = 2x^2 + x + m$ are $\alpha \& \beta$ find the value of m if $\alpha^2 + \beta^2 + \alpha\beta = \frac{13}{4}$.
Q.31	Prove that coordinates of the centroid of a triangle ABC, with vertices $(x_1 y_1)$, (x_2, y_2) and (x_3, y_3) are given by $\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$.
Q.32	Prove that $(\cos \theta + \sec \theta)^2 + (\sin \theta + \csc \theta)^2 = 7 + \tan^2 \theta + \cot^2 \theta$. OR Prove that : $\sin A(1 + \tan A) + \cos A(1 + \cot A) = \sec A + \cos ecA$.
Q.33	Fig. 10 An elastic belt is placed around the rim of a pulley of radius 5 cm. (Fig. 10). From one point C on the belt, the elastic belt is pulled directly away from the centre O if the pulley until it is at P, 10 cm from the point O. Find the length of the belt that is still in contact with the pulley. Also find the shaded area. (Use $\pi = 3.14$ and $\sqrt{3} = 1.73$)
	contact with the purey. This into the shuded area. (Ose $x = 0.14$ and $y_0 = 1.75$)
Q.34	Find the mean for the following distribution :

			visit us at www.agyatgupta.com							
	Marks	10-20	20-30	30-40	40-50	50-60	60-70	70-80		
	Frequency	6	8	13	7	3	2	1		
		PART -	D (Ques	stion 35 to	40 carry 4	4 mark ea	ich.)			
Q.35	Draw a circle of radius 3 cm. Take a point A on its extended diameter at a distance of									
	7 cm from its centre. Draw two tangents to the circle from A.									
Q.36	The perpendicular from A on the side BC of a \triangle ABC intersects BC at D, such that									
	DB = 3 CD. Prove that $2AB^2 = 2AC^2 + BC^2$.									
	OR In given figure in $AABC$ DELEC such that or $(AADE) = ar (BCED)$. Then prove that									
	In given figure in $\triangle ABC$, DE BC such that ar ($\triangle ADE$) = ar (BCED). Then prove that									
	$\frac{BD}{AB} = \frac{2 - \sqrt{2}}{2}. B \qquad C$									
Q.37	Two numbers m &		ich that th	he auadra	tic equation	$ion mx^2$	+3x + 2r	n = 0 has	- 6 as	
	the sum of the roo								•	
			OR							
	Out of the number of saras birds. $\frac{1}{4}$ th of the number are moving about in lots, $\frac{1}{9}$ th									
	coupled with $\frac{1}{4}$ th as well as 7 times the square root of the number move on a hill and 56 birds remain in the vakula trees. What is the total umber of birds?									
Q.38	A solid toy is in the form of a hemispherical surmounted by a right circular cone. The height of the cone is 2cm and the diameter of the base is 4cm. determine the volume of the toy. If a right circular cylinder circumscribes the toy, find the difference of the volume of the cylinder and toy. (Use $\pi = 3.14$)					ume of				
			OR	2						
	A hemispherical tank of radius $1\frac{3}{4}$ is full of water. It is connected with a pipe which						which			
	empties it at the rate of 7 liters per second. How much time will it take to empty tank completely ?							oty the		
Q.39	From a point P or	•		•			*		•	
and of a helicopter, covering at some height above the										
	60° respectively. Find the height at which the helicopter is hovering (above t ground)								ve the	
Q.40		ed by 400) students	in media	cal entran	ce exam	are giver	in the		
-	following table.									
Q.40	60° respectively. ground) The marks obtained	Find the	e height	at which	h the he	licopter	is hover	ing (abo		

Visit us at www.agyatgupta.com

TMC/D/79/89

6 P.T.O. **Target Mathematics by- Dr.Agyat Gupta** visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

Visit us at www.agyatgupta.com 400-450-550-Marks 500-600-650-700-750 750-80 Obtained 450 550 650 500 600 700 No. of 30 45 60 52 54 67 45 47 Examinees (i) Draw Ogive by less than method. (ii) Draw Ogive by more than method. (iii) Find the number of examinees, who have obtained the marks less than 625. (iv) Find the number of examinees, who have obtained 625 and more than marks. " THE TWO MOST POWERFUL WARRIORS ARE PATIENCE AND TIME "

TMC/D/79/89

7 P.T.O. **Target Mathematics by- Dr.Agyat Gupta** visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(P)</u>