Concerciant AG-TS-X-5

REG.NO:-TMC -D/79/89/36/63

(M.Sc, B.Ed., M.Phill, P.hd)

General Instructions :-

(i) All Question are compulsory :

TARGET MATHEMATICS

(ii) This question paper contains **40** questions.

Jhe Excellence Key...

- (iii) Question 1-20in PART-A are Objective type question carrying 1 mark each.
- (iv) Question 21-26in PART-B are sort-answer type question carrying 2 mark each.
- (v) Question 27-34in PART-C are long-answer-I type question carrying 3 mark each.
- (vi) Question 35-40 in PART-D are long-answer-II type question carrying 4 mark each
- (vii) You have to attempt only one lf the alternatives in all such questions.

Visit us at www.agyatgupta.com

(viii)Use of calculator is not permitted.

- (ix) Please check that this question paper contains 12 printed pages.
- (x) Code number given on the right hand side of the

question paper should be written on the title page of the

answer-book by the candidate.

Time : 3 Hours

Maximum Marks : 80

CLASS – X

MATHEMATICS

PRE-BOARD EXAMINATION 2020-21

PART - A (Question 1 to 20 carry 1 mark each.)

SECTION I : Single correct answer type

This section contain 10 multiple choice question . Each question has four

choices (A) , (B) , (C) &(D) out of which **ONLY ONE** is correct .

- Q.1 If the least prime factor of a is 3, the least prime factor of b is 7, then the least prime factor of (a+b) is
 - (a) 2 (b) 3 (c) 5 (d) 11 Ans a
- Q.2 The median of the observations 11, 12, 14, 18, x + 2, x + 4, 30, 32, 35, 41 .arranged in ascending order is 24. then the value of x.

Target Mathematics by- Dr.Agyat Guptavisit us: agyatgupta.com ;Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colonyvisit us: agyatgPh. : 4010685(O), 7000636110(O)Mobile : 9425109601(P)Ph. : 4010685(O)

	Visit us at www.agyatgupta.com
	Now, $PQ + QR + RS = 36 \text{ cm} \text{ (given)}$
	$\Rightarrow 6x + 9x + 12x = 36$
	$\Rightarrow 27x = 36$
	$\Rightarrow x = rac{36}{27} = rac{4}{3}$
	Therefore, PQ = $6 \times \frac{4}{3} = 8$ cm
	$QR = 9 \times \frac{4}{3} = 12 \text{ cm}$
	RS = $12 \times \frac{4}{3}$ = 16 cm
Q.24	A boy is standing on the ground and flying a kite with 100 m of
	string at an elevation of 30° . Another boy is standing on the
	roof of a 10 m high building and is flying his kite at an
	elevation of 45° . Both the boys are on opposite sides of both
	the kites. Find the length of the string that the second boy mus
	have so that the two kites meet
	Sol. Let the length of second string b x m.
	In ΔABC

Ph.: 4010685(O), 7000636110(O) Mobile: 9425109601(P)

visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colonv Ph.: 4010685(O), 7000636110(O) Mobile: 9425109601(P)

	Visit us at www.agyatgupta.com		Visit us at www.agyatgupta.com
	The three digit number which leave remainder 3		(a) Let the number of rides that Kavya had be x and the number
	when divided by 4 are		of times she played hoopla be y.
	103, 107, 111,, 999		Now, the situation can be represented by the two equations as:
	:. $999 = 103 + (n - 1) 4$		3x + 4y = 20(i) y = x/2(ii) (b) Prescriptor that is a method, mut the malue of min eq. (i) and ext
	\Rightarrow n = 225		(b) By substitution method, put the value of y in eq. (i), we get $3x + 4(x) = 20$
	Therefore $\frac{225+1}{2} = 113$ th term is middle term		3x + 2x = 20 5x = 20
	Middle term = $103 + 112 \times 4 = 551$		x = 4 Now put the value of x in (ii) we get,
	Sum of first 112 terms = $\frac{112}{2}$ (206 + 111 × 4) = 36400		y = 4/2 = 2 i.e. Number of rides Kavya takes is 4 and the number of times she played hoopla is 2.
	Sum of last 112 terms = $\frac{112}{2}$ (1110 + 111 × 4) = 87024		OR East which we have (a) of 2 do the pair of linear equations
Q.29	Kavya went to a fair in her village. She wanted to enjoy rides		For which value(s) or λ , do the pair of linear equations
	on the Giant wheel and play Hoopla (a game in which you		$\lambda x + y = \lambda$ and $x + \lambda y - 1$ have (1)no
	throw a ring on the item kept in a stall, and if the ring covers		solution?(2)infinitely many solutions? (3) a unique solution?
	any object completely, you get it). She asked the rates of both	0.20	Ans.(1) $\lambda = -I(n)\lambda = I$ (11)all real values of λ except $\pm I$.
	rides to stall owner. He said each ride costs Rs 3, and a game of	Q.30	The zeros of a quadratic polynomial $p(x) = 2x^2 + x + m$ are
	her that the number of times she played Hoopla should be half		$\alpha \& \beta$. Find the value of m if $\alpha^2 + \beta^2 + \alpha\beta = \frac{13}{4}$. {Ans. m = -
	the number of rides she had on the Giant wheel.		<mark>6</mark>
	(a) Represent the situation by two equations.		
	(b) Find the solution to this pair of equations.		

Visit us at www.agyatgupta.com $\therefore 1 + \tan^2 \theta = \sec^2 \theta \implies \tan^2 \theta = \sec^2 \theta - 1$ $\Rightarrow \tan^2 \theta = \left(\mathbf{x} + \frac{1}{4\mathbf{x}}\right)^2 - 1$ $\Rightarrow \tan^2 \theta = \mathbf{x}^2 + \frac{1}{16\mathbf{x}^2} + 2 \times \mathbf{x} \times \frac{1}{4\mathbf{x}} - 1$ $\Rightarrow \tan^2 \theta = x^2 + \frac{1}{16x^2} + \frac{1}{2} - 1$ \Rightarrow tan $\theta = \pm \left(\mathbf{x} - \frac{1}{4\mathbf{x}} \right)$ $t \Rightarrow \tan^2 \theta = \left(\mathbf{x} - \frac{1}{4\mathbf{x}} \right)^2 \Rightarrow \tan \theta = \pm \left(\mathbf{x} - \frac{1}{4\mathbf{x}} \right)^2$ So, $\tan \theta = \mathbf{x} - \frac{1}{4\mathbf{x}}$ (ii) or $\tan \theta = -\left(\mathbf{x} - \frac{1}{4\mathbf{x}}\right)$ (iii) Adding equation (i) and (ii) $\sec \theta + \tan \theta = \mathbf{x} + \frac{1}{4\mathbf{v}} + \mathbf{x} - \frac{1}{4\mathbf{v}}$ $\sec \theta + \tan \theta = 2x$ Adding equation (i) and (ii) $\sec \theta + \tan \theta = \mathbf{x} + \frac{1}{4\mathbf{x}} - \mathbf{x} + \frac{1}{4\mathbf{x}} = \frac{1}{2\mathbf{x}}$ Hence, $\sec \theta + \tan \theta + 2x \text{ or } \frac{1}{2}$

Visit us at www.agyatgupta.com $= \frac{22}{7} \times 21\sqrt{2} \times 21\sqrt{2} \times \frac{90}{360} - \frac{1}{2} \times 21\sqrt{2} \times 21\sqrt{2}$ $= 693 - 441 = 252 \text{ m}^2$ Area of two flower beds = $2 \times 252 = 504 \text{ m}^2$ Q.34 The mean of the following frequency distribution is 57.6 and 0-20 20-40 40-60 60-80 80-100 Cl 100-120 F f_1 f₂ 7 12 8 5 the sum of the observation is 50. Find the missing frequency $f_1 \text{ and } f_2 \text{ Ans } f_1 = 8 \& f_2 = 10$ **PART – D** (Question 35 to 40 carry 4 mark each.) Q.35 Draw a circle of radius 4 cm. Take a point P outside the circle.

Without using the centre of the circle, draw two tangents to the

 \angle BPQ = 90⁰ and \angle CQP = 90⁰ So. Therefore, BPQC and APQD are both rectangles. Now, from \triangle OPB, $OB^2 = BP^2 + OP^2$(i) Similarly, from \triangle ODQ, $OD^2 = OQ^2 + DQ^2$(ii) From \triangle OOC, we have $OC^2 = OQ^2 + CQ^2$...(iii) And form \triangle OAP, we have $OA^2 = AP^2 + OP^2$ (iv)Adding (i) and (ii) $OB^2 + OD^2 = BP^2 + OP^2 + OQ^2 + DQ^2$ $= CQ^2 + OP^2 + OQ^2 + AP^2$ [As BP = CQ and DQ = AP] $= CQ^2 + OQ^2 + OP^2 + AP^2 = OC^2 + OA^2$ [From (iii) and (iv)] **Hence Proved. Q.37** Swati can row her boat at a speed of 5 km/h in still water. If it takes her 1 hour more to row the boat 5.25 km upstream than to return downstream, find the speed of the stream. **Sol.** Let the speed of the stream be x km/h \therefore Speed of the boat in upstream = (5 - x)km/hSpeed of the boat in downstream = (5 + x)km/h

Visit us at www.agyatgupta.com

Time, say t ₁ (in hours), for going 5.25 km upstream = $\frac{5.25}{5-x}$									
Time, say t ₂ (in hours), for returning 5.25 km									
downstream $=\frac{5.25}{5+x}$									
Obviously $t_1 > t_2$									
Therefore, according to the given condition of the									
problem,									
$t_1 = t_2 + 1$									
i.e., $\frac{5.25}{5-x} = \frac{5.25}{5+x} + 1$ or $\frac{21}{4} \left(\frac{1}{5-x} - \frac{1}{5+x} \right) = 1$									
or $21\left(\frac{5+x-5+x}{25-x^2}\right) = 4$									
or $42x = 100 - 4x^2$									
or $4x^2 + 42x - 100 = 0$ or $2x^2 + 21x - 50 = 0$									
or $(2x + 25) (x - 2) = 0$. This gives $x = 2$, since we reject									
$x = \frac{-25}{2}.$									
Thus, the speed of the stream is 2 km/h.									
OR									
Find the value of p for which the following equation has two									
equal roots : $(p-12)x^2 + 2(p-12)x + 2 = 0$ ANS:									

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

	A hemispherical tank of radius $1\frac{3}{4}$ is full of water. It is									
	connected with a pipe which empties it at the rate of 7 liters per second. How much time will it take to empty the tank completely?									
	Sol. Radius of the hemisphere $=\frac{7}{4}$ m $=\frac{7}{4} \times 100$ cm $= 175$ cm									
	\therefore Volume of the hemisphere = $\frac{2}{3} \times \pi \times 175 \times 175 \times 175$ cm ³									
	The cylindrical pipe empties it at the rate of 7 liters i.e., 7000									
	cm ³ of water per second.									
	Hence, the required time to empty the tank =									
	$\left(\frac{2}{3} \times \frac{22}{7} \times 175 \times 175 \times 175 \div 7000\right)$ s									
	$= \frac{2}{3} \times \frac{22}{7} \times \frac{175 \times 175 \times 175}{7000 \times 60} \text{min} = \frac{11 \times 25 \times 7}{3 \times 2 \times 12} \text{min} = \frac{1925}{72} \text{min}$									
	\approx 26.75 min, nearly.									
Q.39	The angles of depression of the top and bottom of an 8 m tall									
	building from the top of a multistoreyed building are 30° and									
	45 °respectively. Find the height of the multi-storeyed building									
	and the distance between the two buildings. ANS:									

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

	Height of the multistoreyed building													
	$= 4(\sqrt{3} + 1) + 8 = 4(3 + \sqrt{3}) m$													
	Distance between the two buildings													
	$= 4 (3 + \sqrt{3}) m$													
Q.40	A survey regarding the heights (in cm) of 50 girls of a class was)				
	conducted and the following data was obtained:										1			
	Height(Height(in cm) 120 - 13		0 - 130	130 - 140		140 - 150	150 -	160	160 - 170				
	Number	umber of girls 2		8		12	20		8	-				
	Find the mean, median and mode of the above data. ANS :													
	Class	Freque	ncy	Mid v	alue x _i	u_i	$=\left(rac{x_i-A}{h} ight)$	f _i u _i	Cumulative Frequency					
	120 - 130	2		1	125		-2	-4		2				
	130 - 140	8		135		135			-1	-8		10		
	140 - 150	12	145		145 = A		= A		0	0	22			
	150 - 160	20		1	155		1	20		42				
	160 - 170	8		1	165		2			50				
		N = 50)							$\Sigma f_i u_i =$	24			
	i. Let the assumed mean A be 145. Class interval h = 10													
	$egin{aligned} ext{Mean}(\overline{x}) &= A + h\left(rac{\sum f_i u_i}{N} ight) \ &= 145 + 10 imes \left(rac{24}{50} ight) \end{aligned}$													
	= 145	5 + 4.8	= 1	149.8										

Visit us at www.agyatgupta.com

 ii.
$$N = 50; \frac{N}{2} = \frac{30}{2} = 25$$

 Cumulative Frequency just after 25 is 42.

 Therefore, median class is 150 - 160.

 $l = 150, h = 10, f = 20, c. f. = 22$

 Median (M)= $l + h\left(\frac{\frac{N}{2} - c. f.}{f}\right)$
 $= 150 + 10 \times \left(\frac{25 - 22}{20}\right)$
 $= 150 + 10 \times \left(\frac{25 - 22}{20}\right)$
 $= 150 + 1.5 = 151.5$

 iii. we know that, Mode = 3 median - 2 mean

 $= 3(151.5) - 2(149.8)$
 $= 454.5 - 299.6$
 $= 154.9$

 Thus, Mean = 149.8, Median = 151.5, Mode = 154.9

 *********//*********

 โशिक्षा की जड़ कडवी है, पर उसके फल मीठे हैं.

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office: 89-Laxmi bai c12 hy Ph.: 4010685(O), 7000636110(O) Mobile: <u>9425109601(</u>P)