TRAT MBHEMADES
 The Excellence Yey...
 Dr.EAVEIT OUPTI
 (M.Sc, B.Ed., M.Phill, Phd)

Visit us at www.agyatgupta.com

(x) Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.

AG-TMC-X-05-REV
 REG.NO:TMC-D79989/3663

General Instructions :-

(i) All Question are compulsory :
(ii) This question paper contains $\mathbf{4 0}$ questions.
(iii) Question 1-20in PART-A are Objective type question carrying 1 mark each.
(iv) Question 21-26in PART-B are sort-answer type question carrying 2 mark each.
(v) Question 27-34in PART-C are long-answer-I type question carrying 3 mark each.
(vi) Question 35-40 in PART-D are long-answer-II type question carrying 4 mark each
(vii) You have to attempt only one lf the alternatives in all such questions.
(viii) Use of calculator is not permitted.
(ix) Please check that this question paper contains 10 printed pages.

Time : 3 Hours	Maximum Marks : $\mathbf{8 0}$
CLASS -X	MATHEMATICS

PRE-BOARD EXAMINATION 2020-21
PART - (Question 1 to 20 carry 1 mark each.)

SECTION I : Single correct answer type

This section contain 10 multiple choice question. Each question has four choices (A) , (B) , (C) \& (D) out of which ONLY ONE is correct

Q. 1	HCF of two consecutive even numbers is:			
	(A) 0	(B) 1	(C) 4	(D) 2

Q. 2	If the HCF of 210 and 55 is expressible in the form $210 \times 5+55 y$ then $\mathrm{y}=$ a. -19 b. -29 c. 19 d. 29
Q. 3	If HCF of 65 and 117 is expressible in the form of $65 \mathrm{~m}-117$, then the value of m is: (A) 4 (B) 2 (C) 1 (D) 3
Q. 4	If $47 x+31 y=63 ; 31 x+47 y=15$ then (a) $x=2, y=1$ (b) $x=2, y=-1$ (c) $x=1, y=2$ (d) $x=-1, y=2$
Q. 5	In the given Fig. $\angle B A C=90^{\circ}$ and $\mathrm{AD} \perp \mathrm{BC}$. Then,

Visit us at www.agyatgupta.com

(a) $\mathrm{BD} \cdot \mathrm{CD}=B C^{2}$
(b) $\mathrm{AB} \cdot \mathrm{AC}=B C^{2}$
(c) $\mathrm{BD} \cdot \mathrm{CD}=A D^{2}$
(d) $\mathrm{AB} \cdot \mathrm{AC}=A D^{2}$.

In the given
AB are respectively drawn at the
The semi - perimeter of $\triangle T A B$ is equal to
(A) 3 TA
(B) TP
(C) 4 AB
(D) 2 TQ

OR
PT is a tangent to a circle whose center is O . IF $\mathrm{PT}=\mathrm{a}$ units and radius is r units then, how far are P from O ?
$\sqrt{a^{2}+r^{2}}$
(B) $\sqrt{a^{2}-r^{2}}$
(C) $\sqrt{r^{2}-a^{2}}$
(D) $\sqrt{2 x}$
Q. 7 The coordinates of the middle points of the sides of a triangle are $(4,2),(3,3)$ and $(2,2)$, then the coordinates of its centroid are
(a) $(3,7 / 3)(b)$
(b) $(3,3)$
(c) $(4,3)$
(d) none of these
Q. 8 The value of x for which $\mathrm{AB}=\mathrm{BC}$, where $\mathrm{A}(6,-1), \mathrm{B}(1,3)$ and $C(x, 8)$, is
(A) (A)3
(B) -3
(C) 5
(D) -5
Q. 9 If $\cot \theta=\frac{7}{8}$ then the value of $\frac{(1+\cos \theta)}{(1-\sin \theta)} \frac{(1-\cos \theta)}{(1+\sin \theta)}$ is :

Visit us at www.agyatgupta.com

| | (a) $\frac{49}{64}$ (b) $\frac{8}{7}$ (c) $\frac{64}{49}$ (d) $\frac{7}{8}$ |
| :--- | :--- | :--- | :--- | :--- |
| Q.10 | If the points $(k, 2 k),(3 k, 3 k)$ and $(3,1)$ are collinear, then k |
| | (A) $-\frac{1}{3}$ (B) $\frac{1}{3}$ (C) $-\frac{2}{3}$ (D) $\frac{2}{3}$ |

(Q11 - Q15) Answer the following questions

Q. 11	If $\mathrm{h}, \mathrm{s}, \mathrm{V}$ be the height, curved surface area and the volume of a cone respectively, then $\left(3 \pi V h^{3}-s^{2} h^{2}+9 V^{2}\right)$ is equal to ------------
Q. 12	Discriminant of the quadratic equation $2 x^{2}+x-8=0$ is \qquad OR On dividing $3 x^{3}-2 x^{2}+5 x-5$ by a polynomial $\mathrm{p}(\mathrm{x})$, the quotient and remainder are $x^{2}-x+2$ and -7 respectively. Then $\mathrm{p}(\mathrm{x})=--------$.
Q. 13	Determine the ration in which the line $2 \mathrm{x}+\mathrm{y}-4=0$ divides the line segment the joining $\mathrm{A}(2,-2)$ and $\mathrm{B}(3,7)$
Q. 14	Let S_{n} denote the sum of n terms of an AP whose first term is a. if the common difference d is given by $d=S_{n}-K S_{n-1}+S_{n-2}$, then $\mathrm{k}=$ \qquad
Q. 15	The probability that a leap year should have exactly 52 Tuesday is \qquad

Visit us at www.agyatgupta.com

Q. 16	Check whether 4^{n} can end with digit zero for any natural number n .	
Q. 17	In $\triangle A B C, D$ and E are the point on the side $A B$ and $A C$ respectively such that $D E \\| B C$. If $A D=6 x-7, D B=4 x-3, A E=3 x-3$ and $E C=2 x-1$, then find the value of x.	
Q. 18	The sine of an angle is to it's cosine as $8: 15$. find their actual value.	
Q. 19	Is 184 a term of the sequence $3,7,11 \ldots \ldots$?	
Q. 20	If the equation $k x^{2}-5 x+k=0$ has real roots, find the value of k .	
	PART - B (Question 21 to 26 carry 2 mark each.)	

Q. 21 Jasleen goes to big bazaar every 64 days and harpreet goes to the same every 72 days. They meet each other one day. How many days later will they meet each other again?
The radi of two concentric circles are 13 cm and 8 cm . AB is a diameter of the bigger circle. BD is tangent to the smaller circle touching it at D. Find the length of AD .
The base PQ of two equilateral triangles PQR and PQR ' with side 2 a lies along y-axis such that the mid-point of $P Q$ is at the origin. Find the coordinates of the vertices R and R' of the triangles.
Q. 24 The angle of elevation of the top of a hill at the foot of a tower is 60 and the angle of elevation of the top of the tower from the foot of the hill is 30 . If the tower is 50 m high, find the height of the hill.
Q. 25 Cards marked with numbers 13, 14, $15 \ldots \ldots .60$ are placed in a

Visit us at www.agyatgupta.com

box and mixed thoroughly. Once card is drawn at random from the box. Find the probability that the sum of digits on the card drawn is 5 .

OR

A letter is chosen from the word 'EQUATION'. What is the probability that it is a consonant?
A rectangular sheet of paper of dimensions $44 \mathrm{~cm} \times 16 \mathrm{~cm}$ is rolled along its length to form a cylinder of height 16 cm . find the volume of the cylinder .

PART - C (Question 27 to 34 carry 3 mark each.)

Q. 27 Three sets of English, Hindi and mathematics books have to be stacked in such a way that all the books are stored topic-wise and the height of each stack is the same. The number of English books is 96 , the number of Hindi books is 240 and the number of mathematics books is 336 . Assuming that the books are of the same thickness, determine the number of stacks of English, Hindi and mathematics books.

OR

An army contingent of 616 members is to march behind and army band of 32 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march?
Q. 28 The ratio of the sum of m and n of an A.P. is $m^{2}: n^{2}$. Show that the ratio of the m th and nth terms is $(2 m-1):(2 n-1)$
Q. 29 The ages of two friends Ani and Biju differ by 3years. Ani's father Dhatam is twice as old as Ani and Biju is twice as old as

Visit us at www.agyatgupta.com

Visit us at www.agyatgupta.com
Q. 34 Find the mode of the following distribution of marks obtained by 50 students.

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
No. of students	4	8	10	20	8

PART - D (Question 35 to 40 carry 4 mark each.)
Q. 35 Draw a circle of radius 6 cm from a point 10 cm away from the center, construct the pair of tangent to the circle and measure their length
In below Fig., $\triangle \mathrm{ABC}$ is right angled at C and $\mathrm{DE} \perp \mathrm{AB}$. Prove that $\triangle \mathrm{ABC} \sim \triangle \mathrm{ADE}$ and Hence find the lengths of AE and DE .

OR

$A B C$ is a triangle in which $A B=A C$ and D is a point on $A C$ such that $\mathrm{BC}^{2}=\mathrm{AC} \times \mathrm{CD}$. Prove that $\mathrm{BD}=\mathrm{BC}$.
A train travels at a certain average speed for a distance of 63 km and then travels a distance of 72 km at an average speed of $6 \mathrm{~km} / \mathrm{h}$ more than its original speed. If it takes 3 hours to complete the total journey, what is its original average speed?

OR

Visit us at www.agyatgupta.com

	Solve $x^{2}-(\sqrt{3}+1) x+\sqrt{3}=0$ by the method of completing the square.							
Q. 38	A semicircular thin sheet of metal of diameter 28 cm is bent and an open conical cup is made. Find the capacity of the cup. OR Water in a canal, 30 dm wide and 12 dm deep, is flowing with a speed of $10 \mathrm{~km} / \mathrm{hr}$. How much area will it irrigate in 30 minutes if 8 cm of standing water is required from irrigation.							
Q. 39	From the top of a tower the angle of depression of an object on the horizontal ground is found to be 60°. On descending 20 m vertically downwards from the top of the tower, the angle of depression of the object is found to be 30°. Find the height of the tower.							
Q. 40	If the median of the distribution given below is 28.5 , find the values of x and y.							
	Class interval	0-10	10-20	20-30	30-40	40-50	50-60	Total
	Frequenc y	5	x	20	15	y	5	60
	***********//**********							
	बिना शिक्षा प्राप्त किये कोई व्यक्ति अपनी परम ऊँचाइयों को नहीं छू सकता.							

Visit us at www.agyatgupta.com

