TRAT MBHEMADES
 The Excellence Yey...
 Dr.ACHVIT RUPTA
 (M.Sc, B.Ed., M.Phill, Phd)

Visit us at www.agyatgupta.com

(x) Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.

Time :3 Hours M		Maximum Marks : 80
CL	SS - X M	MATHEMATICS
PRE-BOARD EXAMINATION 2020-21		
PART - A (Question 1 to 20 carry 1 mark each.)		
SECTION I : Single correct answer type This section contain 10 multiple choice question. Each question has four choices (A) , (B) , (C) \& (D) out of which ONLY ONE is correct .		
Q. 1	HCF of two consecutive even numbers is: (A) 0 (B) 1 (C) 4 (D) 2 ANS	NS D
Q. 2	If the HCF of 210 and 55 is expressible in the $210 \times 5+55 y$ then $\mathrm{y}=$ a. -19 b. -29 c. 19 d. 29 ANS : (a) -19	he form
Q. 3	If HCF of 65 and 117 is expressible in the then the value of m is: (A) 4 (B) 2 (C) 1 (D) 3 ANS B	e form of $65 \mathrm{~m}-117$,
Q. 4	If $47 x+31 y=63 ; 31 x+47 y=15$ then (a) $x=2, y=1$ (b) $x=2, y=-1$ (c) $x=1, y=2$ Ans.(b)	(d) $x=-1, y=2$

Visit us at www.agyatgupta.com
Q. 5 In the given Fig. $\angle B A C=90^{\circ}$ and $\mathrm{AD} \perp \mathrm{BC}$. Then
(a) $\mathrm{BD} . \mathrm{CD}=B C^{2}$
(b) $\mathrm{AB} \cdot \mathrm{AC}=B C^{2}$
(c) $\mathrm{BD} \cdot \mathrm{CD}=A D^{2}$
(d) $\mathrm{AB} \cdot \mathrm{AC}=A D^{2}$.

Ans.c

are three tangents $T P, T Q$ and
In the given the point P, Q and R to a circle. The semi - perimeter of $\triangle T A B$ is equal to
(A) 3 TA
(B) TP
(C) 4 AB
(D) 2 TQ ANS : B

OR

PT is a tangent to a circle whose center is O. IF PT = a units and radius is r units then, how far are P from O ?
$\sqrt{a^{2}+r^{2}}$
(B) $\sqrt{a^{2}-r^{2}}$
(C) $\sqrt{r^{2}-a^{2}}$
(D) $\sqrt{2 x}$ ANS : A
Q. 7 The coordinates of the middle points of the sides of a triangle are $(4,2),(3,3)$ and $(2,2)$, then the coordinates of its centroid are
(a) $(3,7 / 3)(b)(3,3)$
(c) $(4,3)$
(d) none of these (Ans. a)
Q. 8 The value of x for which $\mathrm{AB}=\mathrm{BC}$, where $\mathrm{A}(6,-1), \mathrm{B}(1,3)$ and $\mathrm{C}(\mathrm{x}, 8)$, is
(A) (A)3
(B) -3
(C) 5
(D) -5 ANS.(B), (C)

Visit us at www.agyatgupta.com
Q. 9 If $\cot \theta=\frac{7}{8}$ then the value of $\frac{(1+\cos \theta)}{(1-\sin \theta)} \frac{(1-\cos \theta)}{(1+\sin \theta)}$ is :
(a) $\frac{49}{64}$
(b) $\frac{8}{7}$
(c) $\frac{64}{49}$
(d) $\frac{7}{8}$ Ans.c
(A) $-\frac{1}{3}$
(B) $\frac{1}{3}$
(C) $-\frac{2}{3}$
(D) $\frac{2}{3}$
ANS. (A)

(Q11 - Q15) Answer the following questions

Q. 11	If h, s, V be the height, curved surface area and the volume of a cone respectively, then $\left(3 \pi V h^{3}-s^{2} h^{2}+9 V^{2}\right)$ is equal to ------------- 0
Q. 12	Discriminant of the quadratic equation $2 x^{2}+x-8=0$ is \qquad OR On dividing $3 x^{3}-2 x^{2}+5 x-5$ by a polynomial $\mathrm{p}(\mathrm{x})$, the quotient and remainder are $x^{2}-x+2$ and -7 respectively. Then $\mathrm{p}(\mathrm{x})=$ \qquad ans : $\begin{aligned} \mathrm{p}(x) & =\frac{3 x^{3}-2 x^{2}+5 x+2}{x^{2}-x+2} \\ & =3 x+1 \end{aligned}$
Q. 13	Determine the ration in which the line $2 x+y-4=0$ divides the line segment the joining $\mathrm{A}(2,-2)$ and $\mathrm{B}(3,7)$ \qquad $2: 9$
Q. 14	Let S_{n} denote the sum of n terms of an AP whose first term is a.

Target Mathematics by- Dr.Agyat Gupta
visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony
Ph. : 7000636110(O) Mobile : 9425109601(P)

Visit us at www.agyatgupta.com
if the common difference d is given by $d=S_{n}-K S_{n-1}+S_{n-2}$, then $\mathrm{k}=$ \qquad 2
Q. 15

The probability that a leap year should have exactly 52 Tuesday is ------ $\frac{5}{7}$

Fill in the blanks (Q16 - Q20)

Q. 16

Check whether 4^{n} can end with digit zero for any natural number n.ANS
If a number 4^{I},for any natural number n nends with digit 0 , then it is divisible by 5 .
The prime factorization of 4^{n} must contain the prime factor 5 .
This is not possible because prime factors of 4^{n} is 2 only and the uniqueness of
Fundamental theorem of arithmetic guarantees that there are no other prime in.
factorisation of 4^{n}.
Hence 4^{n} can never end with the digit zero for $n \in N$.
Q. 17

In $\triangle A B C, D$ and E are the point on the side $A B$ and $A C$ respectively such that $D E \| B C$. If $A D=6 x-7, D B=4 x-3, A E=3 x-3$ and $E C=2 x-1$, then find the value of x.SOL:

Visit us at www.agyatgupta.com

visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. : 7000636110(O) Mobile : 9425109601(P)

Target Mathematics by- Dr.Agyat Gupta
visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office: 89-Laxmi bai colony
Ph. : 7000636110(O) Mobile : 9425109601(P)

Visit us at www.agyatgupta.com
k.ANS: ANS: $D \geq O \quad O R \quad 25-4 k^{2} \geq 0 \Rightarrow \frac{5}{2} \leq k \leq-\frac{5}{2}$

PART - B (Question 21 to 26 carry 2 mark each.)

Q. 21 Jasleen goes to big bazaar every 64 days and harpreet goes to the same every 72 days. They meet each other one day. How many days later will they meet each other again?Answer-: 576 days
The radi of two concentric circles are 13 cm and $8 \mathrm{~cm} . \mathrm{AB}$ is a diameter of the bigger circle . BD is tangent to the smaller circle touching it at D. Find the length of AD . ANS

$$
\mathrm{AE}=16 ; B D=D E=\sqrt{105} ;
$$

$A D^{2}=A E^{2}+D E^{2} \Rightarrow A D=\sqrt{361}=19$
Q. 23 The base PQ of two equilateral triangles PQR and PQR ' with side 2 a lies along y-axis such that the mid-point of $P Q$ is at the origin. Find the coordinates of the vertices R and R' of the triangles.

Visit us at www.agyatgupta.com

Sol:

We have two equilateral triangle and with side $\mathrm{PQR} \mathrm{PQR}^{\prime} 2 \mathrm{a}$
O is the mid-point of PQ .
In $\triangle Q O R, \angle Q O R=90^{\circ}$
Hence, by Pythagoras theorem
$O R^{2}+O Q^{2}=Q R^{2}$
$O R^{2}=(2 a)^{2}-(a)^{2}$
$O R^{2}=3 a^{2}$
$O R=\sqrt{(3)} a$
Coordinates of vertex R is $(\sqrt{3} a, 0)$ and coordinate of vertex R^{\prime} is $(-\sqrt{3} a, 0)$
Q. 24 The angle of elevation of the top of a hill at the foot of a tower is 60 and the angle of elevation of the top of the tower from the foot of the hill is 30 . If the tower is 50 m high, find the height
visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. : 7000636110(O) Mobile : 9425109601(P)

Visit us at www.agyatgupta.com

In rt $\triangle \mathrm{BAC}$

$$
\cot 30^{\circ}=\frac{\mathrm{AC}}{50}
$$

$$
\mathrm{AC}=50 \sqrt{3} \mathrm{~m}
$$

of the hill. ANS:

$$
\text { In rt } \triangle \mathrm{ACD}
$$

$$
\tan 60^{\circ}=\frac{C D}{50 \sqrt{3}} \Rightarrow C D=150 \mathrm{~m}
$$

Q. 25 Cards marked with numbers $13,14,15 \ldots \ldots 60$ are placed in a box and mixed thoroughly. Once card is drawn at random from the box. Find the probability that the sum of digits on ${ }^{5}$ te card drawn is 5 .

ANS:
Sample space $=\{13,14,15$, \qquad 601
Total no. of possible outcomes $=48$
Favourable outcomes $=14,23,32,41,50$
$\therefore \mathrm{P}($ sum of digits is 5$)=\frac{5}{48}$

Visit us at www.agyatgupta.com
A letter is chosen from the word 'EQUATION'. What is the probability that it is a consonant ?ans : $3 / 8$
Q. 26

A rectangular sheet of paper of dimensions $44 \mathrm{~cm} \times 16 \mathrm{~cm}$ is rolled along its length to form a cylinder of height 16 cm . find the volume of the cylinder .
visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. : 7000636110(O) Mobile : $9425109601(\mathrm{P})$

Visit us at www.agyatgupta.com

Visit us at www.agyatgupta.com

books is 96 , the number of Hindi books is 240 and the number of mathematics books is 336 . Assuming that the books are of the same thickness, determine the number of stacks of English, Hindi and mathematics books.
ANSWER -: Thus, HCF of 96,240 and 336 is 48 .Hence, there must be 48 books in each stack.Now, Number of stacks of English books $=\frac{\text { number of english books }}{\text { number of books in each stack }}=\frac{96}{48}=2$ Number of stacks of Hindi books= $\frac{\text { number of hindi books }}{\text { number of books in each stack }}=\frac{240}{48}=5$
And Number of stacks of mathematics books= $\frac{\text { number of mathematics books }}{\text { number of books in each stack }}=\frac{336}{48}=7$
OR

An army contingent of 616 members is to march behind and army band of 32 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march? ANS

Let x be the maximum number of columns in which the two groups can march. x is HCF of 616 and 32.
By Euclid's division algorithm
$616=32 \times 19+18$
$32=8 \times 4+0$
$\operatorname{HCF}(616,32)=8$
Hence the maximum number of columns in which they can march is 8 .
Ans: 8 columns

Target Mathematics by- Dr.Agyat Gupta
visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony
Ph. : 7000636110(O) Mobile : 9 9425109601(P)

Visit us at www.agyatgupta.com

Q. 28 The ratio of the sum of m and n of an A.P. is $m^{2}: n^{2}$. Show that the ratio of the mth and nth terms is $(2 m-1):(2 n-1)$ ANS: $\frac{S_{m}}{S_{n}}=\frac{m^{2}}{n^{2}} \Rightarrow \frac{m / 2[2 a+(m-1) d]}{n / 2[2 a+(n-1) d]}=\frac{m^{2}}{n^{2}}$ therefore $\quad \mathrm{d} \quad=\quad 2 \mathrm{a} \quad \&$ $\frac{T_{m}}{T_{n}}=\frac{[a+(m-1) d]}{[a+(n-1) d]}=\frac{2 m-1}{2 n-1}$
Q. 29 The ages of two friends Ani and Biju differ by 3years. Ani's father Dhatam is twice as old as Ani and Biju is twice as old as his sister Cathy. The ages of Cathy and Dharam differ by 30 years. Find the ages of Ani and Bijy. ans $X-Y= \pm 3 ; 2 X-\frac{Y}{2}=30 \Rightarrow X=19 \& Y=16$ OR $\quad X=21 \& Y=24$

OR

In a $\triangle \mathrm{ABC}, \quad \angle \mathrm{A}=\mathrm{x}^{0,} \angle \mathrm{~B}=\left(3 \mathrm{x}-2^{0}\right), \angle C=y^{\circ}$ Also , $\angle C-\angle B=9^{\circ}$ Find the three angles.
$\angle A=x^{\circ} \ldots$..(i)
$\angle B=(3 x-2)^{\circ} \ldots$ (ii)
$\angle C=y^{\circ} \ldots$ (iii)
And, $\angle C-\angle B=9^{\circ}$

$$
\begin{align*}
& y-(3 x-2)=9 \tag{iv}\\
& \Rightarrow y-3 x+2=9 \\
& \Rightarrow y-3 x=9-2 \\
& \Rightarrow-3 x+y=7 \ldots(v)
\end{align*}
$$

Visit us at www.agyatgupta.com

	$\begin{aligned} & \therefore \angle A+\angle B+\angle C=180^{\circ} \\ & \Rightarrow \mathrm{x}+3 \mathrm{x}-2+\mathrm{y}=180 \\ & \Rightarrow 4 \mathrm{x}+\mathrm{y}=180+2 \\ & \Rightarrow 4 \mathrm{x}+\mathrm{y}=182 \ldots(\mathrm{vi}) \\ & 4 \mathrm{x}+3 \mathrm{x}=182-7 \\ & \Rightarrow 7 \mathrm{x}=175 \\ & \Rightarrow x=\frac{175}{7}=25 \\ & \therefore \angle A=x^{\circ}=25^{\circ} \\ & \angle B=(3 x-2)^{\circ}=(3 \times 25-2)^{\circ}=(75-2)=73^{\circ} \end{aligned}$ $\text { And, } \angle C=y^{\circ}=82^{\circ}$
Q. 30	Find the value of a and b such that $x^{4}+x^{3}+8 x^{2}+a x+b$ is divisible by $x^{2}+1$ give the remainder $3 \mathrm{x}+5 . a=4 \& b=12$
Q. 31	If the point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is equidistant from the points $\mathrm{A}(3,6)$ and $\mathrm{B}(-$ $3,4)$ prove that $3 x+y-5=0$.
Q. 32	Prove that : $\frac{\tan A}{1-\cot A}+\frac{\cot A}{1-\tan A}=1+\sec \mathrm{A} \operatorname{cosec} \mathrm{A}$. ANS:

Visit us at www.agyatgupta.com

$$
\begin{aligned}
& \text { LHS } \frac{\frac{\sin A}{\cos A}}{1-\frac{\cos A}{\sin A}}+\frac{\frac{\cos A}{\sin A}}{1-\frac{\sin A}{\cos A}} \\
& \frac{\sin A \times \sin A}{\cos A(\sin A-\cos A)}+\frac{\cos A \times \cos A}{\sin A(\cos A-\sin A)} \\
& \frac{\sin ^{2} A}{\cos A(\sin A-\cos A)}-\frac{\cos ^{2} A}{\sin A(\sin A-\cos A)} \\
& \frac{\sin ^{3} A-\cos ^{3} A}{\sin A \cos A(\sin A-\cos A)} \\
& \left.\frac{(\sin A-\cos A)}{\sin A \sin 2}+\cos ^{2} A+\cos A \sin A\right) \\
& \frac{1+\cos A \sin A}{\sin A \cos A}=\frac{1}{\sin A \cos A}+1 \\
& \sin A \operatorname{cosec} A+1-R H S
\end{aligned}
$$

If $\tan \mathrm{A}+\sin \mathrm{A}=\mathrm{m}$ and $\tan \mathrm{A}-\sin \mathrm{A}=\mathrm{n}$, prove that $\left(\mathrm{m}^{2}-\mathrm{n}^{2}\right)^{2}$ $=16 \mathrm{mn}$. $\underline{\text { ANS: }}$

Visit us at www.agyatgupta.com

Visit us at www.agyatgupta.com

arcs of equal radii 7 cm have been drawn, with centers $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D , then find the area of the shaded region.

ANS:

$$
\text { Area of trapezium }=\frac{1}{2}(18+32) \times 14=350 \mathrm{~cm}^{2}
$$

$$
\text { Area of four arcs }=\pi(7)^{2}=154 \mathrm{~cm}^{2}
$$

$$
\text { Area of shaded region }=350-154=196 \mathrm{~cm}^{2}
$$

Find the mode of the following distribution of marks obtained by 50 students.

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
No. of students	4	8	10	20	8

Visit us at www.agyatgupta.com

visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. : 7000636110(O) Mobile : 9425109601(P)

Visit us at www.agyatgupta.com

i. Join PO and bisect it. Let M be the mid-point of PO
ii. Taking M as centre and MO as radius, draw a circle. Let it intersects the given circle at the points Q and R .
iii. Join $P Q$ and $P R$.

Then $P Q$ and $P R$ are the required two tangents.
By measurement, $P Q=P R=8 \mathrm{~cm}$
Justification: Join OQ and OR.
Since $\angle Q P O$ and $\angle O R P$ are the angles in semicircles.

$$
\therefore \angle O Q P=90^{\circ}=\angle O R P
$$

Also, since $O Q$, $O R$ are radii of the circle, $P Q$ and $P R$ will be the tangents to the circle at Q and R respectively.
\therefore We may see that the circle with OP as diameter increases the given circle in two points. Therefore, only two tangents can be draw.

In below Fig., $\triangle \mathrm{ABC}$ is right angled at C and $\mathrm{DE} \perp \mathrm{AB}$. Prove that $\triangle \mathrm{ABC} \sim \triangle \mathrm{ADE}$ and Hence find the lengths of AE and DE .

Sol:
In $\triangle \mathrm{ACB}$, by Pythagoras theorem
$A B^{2}=A C^{2}+B C^{2}$
$\Rightarrow A B^{2}=(5)^{2}+(12)^{2}$
$\Rightarrow A B^{2}=25+144=169$

Visit us at www.agyatgupta.com

$$
\Rightarrow \mathrm{AB}=\sqrt{169}=13 \mathrm{~cm}
$$

$$
\text { In } \triangle \mathrm{AED} \text { and } \triangle \mathrm{ACB}
$$

$$
\angle \mathrm{A}=\angle \mathrm{A} \text { [Common] }
$$

$$
\angle \mathrm{AED}=\angle \mathrm{ACB}\left[\text { Each } 90^{\circ}\right]
$$

Then, \triangle AED $\sim \Delta$ ACB [By AA similarity]
$\therefore \frac{A E}{A C}=\frac{D E}{C B}=\frac{A D}{A B}$
$\Rightarrow \frac{A E}{5}=\frac{D E}{12}=\frac{3}{13}$
$\Rightarrow \frac{A E}{5}=\frac{3}{13}$ and $\frac{D E}{12}=\frac{3}{13}$
$\Rightarrow \mathrm{AE}=\frac{15}{13} \mathrm{~cm}$ and $\mathrm{DE}=\frac{36}{13} \mathrm{~cm}$
Or ANS:

In right $\triangle P Q R, P R^{2}=P^{2}+\mathrm{QR}^{2}$

$$
=25+144
$$

$$
\begin{aligned}
& \frac{P Q}{P E}=\frac{Q R}{D E}=\frac{P R}{P D} \Rightarrow \frac{5}{x}=\frac{12}{y}=\frac{13}{3} \\
& \Rightarrow P E=\frac{15}{13} ; D E=\frac{36}{13} \\
& \quad \text { OR }
\end{aligned}
$$

ABC is a triangle in which $\mathrm{AB}=\mathrm{AC}$ and D is a point on AC such that $\mathrm{BC}^{2}=\mathrm{AC} \times \mathrm{CD}$. Prove that $\mathrm{BD}=\mathrm{BC}$. SOL:

Target Mathematics by- Dr.Agyat Gupta
visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony
Ph. : 7000636110(O) Mobile : $\underline{9425109601(P) ~}$

Visit us at www.agyatgupta.com

$$
\begin{align*}
& \mathrm{BC}^{2}=\mathrm{AC} \times \mathrm{CD} \\
& \frac{\mathrm{BC}}{\mathrm{AC}}=\frac{C D}{B C} \tag{1}
\end{align*}
$$

In \triangle DBC and $\triangle B A C$. $\frac{B C}{A C}=\frac{C D}{B C}$ From (1)
$\angle B C D=\angle B C A$
$\Delta D B C \sqcup \Delta B C A \ldots$ by SAS similarity
$\Rightarrow \frac{B D}{A B}=\frac{B C}{A C}$

$$
\frac{B D}{A B}=\frac{B C}{A C} \quad(\because A C=A B)
$$

$$
\Rightarrow B D=B C
$$

Q. 37 A train travels at a certain average speed for a distance of 63 km and then travels a distance of 72 km at an average speed of $6 \mathrm{~km} / \mathrm{h}$ more than its original speed. If it takes 3 hours to complete the total journey, what is its original average speed ? Solution : Let its original average speed be $x \mathrm{~km} / \mathrm{h}$. Therefore,

Visit us at www.agyatgupta.com

$$
\begin{array}{ll}
\frac{63}{x}+\frac{72}{x+6}=3 & 21(x+6)+24 x=x(x+6) \\
\frac{7}{x}+\frac{8}{x+6}=\frac{3}{9}=\frac{1}{3} & x^{2}-39 x-126+24 x=x^{2}+6 x \\
\frac{7(x+6)+8 x}{x(x+6)}=\frac{1}{3} & (x+3)(x-42)=0 \\
x=-3 \text { or } x=42
\end{array}
$$

Since x is the average speed of the train, x cannot be negative. Therefore, $x=42$. So, the original average speed of the train is $42 \mathrm{~km} / \mathrm{h}$.

OR

Solve $x^{2}-(\sqrt{3}+1) x+\sqrt{3}=0$ by the method of completing the

$$
\begin{aligned}
& x^{2}-(\sqrt{3}+1) x+\sqrt{3}=0 \\
& x^{2}-(\sqrt{3}+1) x=-\sqrt{3} \\
& x^{2}-2\left(\frac{\sqrt{3}+1}{2}\right) x+\left(\frac{\sqrt{3}+1}{2}\right)^{2}=-\sqrt{3}+\left(\frac{\sqrt{3}+1}{2}\right)^{2} \\
& \left(x-\frac{\sqrt{3}+1}{2}\right)^{2}=\frac{-4 \sqrt{3}+(\sqrt{3}+1)^{2}}{4} \\
& \left(x-\frac{\sqrt{3}+1}{2}\right)^{2}=\left(\frac{\sqrt{3}-1}{2}\right)^{2} \\
& x-\frac{\sqrt{3}+1}{2}= \pm \frac{\sqrt{3}-1}{2}
\end{aligned}
$$

square. ANS: $x=\sqrt{3}$ and 1
A semicircular thin sheet of metal of diameter 28 cm is bent and an open conical cup is made. Find the capacity of the cup.

Visit us at www.agyatgupta.com

28 cm
Slant height of cone $=14 \mathrm{~cm}$
Circumference of sheet $=\pi \mathrm{r}$

$$
=\frac{22}{7} \times 14=44 \mathrm{~cm}
$$

Let ' r ' be the radius of cone

$$
\therefore 2 \pi r=44 \Rightarrow r=7
$$

$\therefore \quad \mathrm{h}^{2}=\sqrt{l^{2}-\mathrm{r}^{2}}$

$$
=\sqrt{196-49}
$$

ANS: $\quad=\sqrt{147}$
$\therefore \quad \mathrm{h}=7 \sqrt{3}$
Volume of cup $=1 / 3 \pi r^{2} \mathrm{~h}$

$$
\begin{aligned}
& =\frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \times 7 \sqrt{3} \\
& =\frac{1078 \sqrt{3}}{3} \mathrm{~cm}^{3}
\end{aligned}
$$

OR

Water in a canal, 30 dm wide and 12 dm deep, is flowing with a speed of $10 \mathrm{~km} / \mathrm{hr}$. How much area will it irrigate in 30 minutes if 8 cm of standing water is required from irrigation.
Sol. Speed of water in the canal $=10 \mathrm{~km} . \mathrm{h}=10000 \mathrm{~m} .60 \mathrm{~min}$ $=\frac{500}{3} \mathrm{~m} / \mathrm{min}$.
\therefore The volume of the water flowing out of the canal in 1 minute

Visit us at www.agyatgupta.com

$$
=\left(\frac{500}{3} \times \frac{30}{10} \times \frac{12}{10}\right) \mathrm{m}^{2}=600 \mathrm{~m}^{3}
$$

In 30 min , the amount of water flowing out of the canal = $(600 \times 30) \mathrm{m}^{3}=600 \mathrm{~m}^{3}$
If the required area of the irrigated land is $\times \mathrm{m}^{2}$, then the volume of water to be needed to irrigate the land

$$
=\left(x \times \frac{8}{100}\right) m^{3}=\frac{2 x}{25} m^{3} \text { Hence, } \frac{2 x}{25}=18000 \quad \Rightarrow \quad x=18000 \times \frac{25}{2}=225000
$$

Hence, the required area is $225000 \mathrm{~m}^{2}$.
Q. 39 From the top of a tower the angle of depression of an object on the horizontal ground is found to be 60°. On descending 20 m vertically downwards from the top of the tower, the angle of depression of the object is found to be 30°. Find the height of the tower.

In rt $\triangle \mathrm{ACP}$
$\tan 60^{\circ}=\frac{h}{x}$
$\sqrt{3} x=\mathbf{h}$
$x=h / \sqrt{3}$
In it $\triangle B C P$
visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. : 7000636110(O) Mobile : $\underline{9425109601(P) ~}$

Visit us at www.agyatgupta.com

	$\begin{aligned} & \tan 30^{\circ}=\frac{\mathrm{h}-20}{x} \\ & \frac{1}{\sqrt{3}}=\frac{\mathrm{h}-20}{\mathrm{~h} / \sqrt{3}} \text { from (1) } \\ & \frac{\mathrm{h}}{3}=\mathrm{h}-20 \\ & \quad \mathrm{~h}=30 \mathrm{~m} \\ & \therefore \quad \text { Height of the tower is } 30 \mathrm{~m} \end{aligned}$							
Q. 40	If the median of the distribution given below is 28.5 , find the values of x and y.							
	Class interval	0-10	10-20	20-30	30-40	40-50	50-60	Total
	Frequenc y	5	x	20	15	y	5	60
	ans-: $x=8$,	$y=7$						
	***********//**********							
	बिना शिक्षा प्राप्त किये कोई व्यक्ति अपनी परम ऊँचाइयों को नहीं छू सकता.							

Target Mathematics by- Dr.Agyat Gupta
visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office: 89-Laxmi baí Colony Ph. : 7000636110(O) Mobile : 9425109601(P)

