PRE-BOARD EXAMINATION 2020-21 CODE-AG-TMC-TS-XII-08-2102

MATHEMATICS

Time allowed : 3 hours

Maximum marks : 80

General Instructions :

- 1. This question paper contains two parts A and B. Each part is compulsory. Part-A carries 24 marks and Part-B carries 56 marks.
- 2. Part-A has Objective Type Questions and Part-B has Descriptive Type Questions.
- 3. Both Part-A and Part-B have internal choices.

Part -A:

- 1. It consists of two Sections-I and II.
- 2. Section-I comprises of 16 very short answer type questions.
- 3. Section-II contains 2 case study-based questions.

Part - B :

- 1. It consists of three Sections-III, IV and V.
- 2. Section-III comprises of 10 questions of 2 marks each.
- 3. Section-IV comprises of 7 questions of 3 marks each.
- 4. Section-V comprises of 3 questions of 5 marks each.
- 5. Internal choice is provided in 3 questions of Section-III, 2 questions of Section-IV and 3 questions of Section-V. You have to attempt only one of the alternatives in all such questions.

PART - A

Section - I

1. Write the cofactor of the element a_{31} in $A = \begin{pmatrix} 3 & 2 & 6 \\ 5 & 0 & 7 \\ 3 & 8 & 5 \end{pmatrix}$.

OR

If *A* is a square matrix of order 3 and |2A| = k|A|, then find the value of *k*.

2. Evaluate : $\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2}\right)\right]$

3. Find the integrating factor of the differential equation $\left\{\frac{e^{-2\sqrt{x}}}{\sqrt{x}} + \frac{y}{\sqrt{x}}\right\}\frac{dx}{dy} = 1(x \neq 0).$

Find order and degree of the equation $\left(\frac{d^3y}{dx^3}\right)^4 + \left(\frac{d^2y}{dx^2}\right)^3 + \frac{dy}{dx} + 4y = \sin x$.

4. If
$$f(x) = x^2 - 4x + 1$$
, find $f(A)$, where $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$.

5. Find the unit vector in the direction of vector $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$.

OR

Find the projection of the vector $7\hat{i} + \hat{j} - 4\hat{k}$ on $2\hat{i} + 6\hat{j} + 3\hat{k}$.

- 6. Check whether the function $f(x) = x^3 3x^2 x$ is one-one or not?
- 7. Evaluate : $\int_{1}^{3} (x-1)(x-2)(x-3)dx$

OR

Evaluate :
$$\int_{-\pi}^{\pi} x^{10} \sin^7 x \ dx$$

to -----

- 8. Check whether the lines having direction ratios $(\sqrt{3}-1, -\sqrt{3}-1, 4)$ and $(-\sqrt{3}+1, \sqrt{3}+1, -4)$ are perpendicular to each other.
- **9.** If the vectors $3\hat{i} + 2\hat{j} \hat{k}$ and $6\hat{i} 4x\hat{j} + y\hat{k}$ are parallel, then the values of x and y.

OR

Find the point which divides the line segment joining the points (-2, 3, 5) and (1, 2, 3) in the ratio 2 : 3 externally.

- 10. Find vector equation of the plane which is at a distance of $\frac{6}{\sqrt{29}}$ from the origin and its normal vector from the origin is $2\hat{i} 3\hat{j} + 4\hat{k}$.
- **11.** Let $A = \{1, 2, 3, 4\}$. Show that $f = \{(1, 2), (2, 3), (3, 4), (4, 1)\}$ is a bijection from A to A?
- 12. If $|\mathbf{a}| = 4$, $|\mathbf{b}| = 2$ and the angle between a and $\underline{\mathbf{b}}$ is $\frac{\pi}{6}$, then $(\vec{a} \times \vec{b})^2$ is equal
- 13. Find the area of the region bounded between the line x = 2 and the parabola $y^2 = 8x$.
- 14. Find equation of a line which passes through the point (1, 2, 3) and is parallel to the vector $3\hat{i} + 2\hat{j} 2\hat{k}$.

15. If
$$A = \begin{bmatrix} 2 & 2 \\ -3 & 1 \\ 4 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 6 & 2 \\ 1 & 3 \\ 0 & 4 \end{bmatrix}$, such that $A + B + C$ is a zero matrix, then find the matrix C .

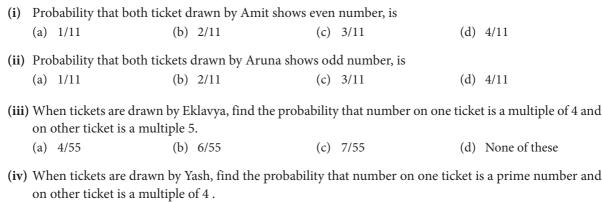
16. If the line joining (2, 3, -1) and (3, 5, -3) is perpendicular to the line joining (1, 2, 3) and (3, 5, λ), then find the value of λ.

Section - II

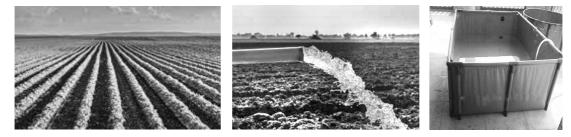
Case study-based questions are compulsory. Attempt any 4 sub parts from each question. Each sub-part carries 1 mark.

17. A teacher arranged a surprise game for students of a classroom having 5 students, namely Amit, Aruna, Eklavya, Yash and Samina. He took a bag containing tickets numbered 1 to 11 and told each student to draw two tickets without replacement.

Mathematics



- (v) When tickets are drawn by Samina, find the probability that first ticket drawn shows an even number and second ticket drawn shows an odd number.
 - (a) 2/11 (b) 3/11 (c) 5/11 (d) 8/11
- **18.** An open water tank of aluminium sheet of negligible thickness, with a square base and vertical sides, is to be constructed in a farm for irrigation. It should hold 4000 *l* of water, that comes out from a tube well.



Based on above information, answer the following questions.

(i) If the length, width and height of the open tank be *x*, *x* and *y* m respectively, then surface area of tank is given by

(a)
$$S = x^2 + 2xy$$
 (b) $S = 2x^2 + 4xy$ (c) $S = 2x^2 + 2xy$ (d) $S = 2x^2 + 8xy$
(ii) The relation between *x* and *y* is

(a)
$$x^2y = 4$$
 (b) $xy^2 = 4$ (c) $x^2y^2 = 4$ (d) $xy = 4$

- (iii) The outer surface area of tank will be minimum when depth of tank is equal to
 - (a) half of its width (b) its width (c) $\left(\frac{1}{4}\right)^{\text{th}}$ of its width (d) $\left(\frac{1}{3}\right)^{\text{rd}}$ of its width

(iv) The cost of material will be least when width of tank is equal to

(a) half of its depth (b) twice of its depth (c) $\left(\frac{1}{4}\right)^{\text{th}}$ of its depth (d) thrice of its depth

(v) If cost of aluminium sheet is ₹ 360/m², then the minimum cost for the construction of tank will be
(a) ₹ 2320
(b) ₹ 3320
(c) ₹ 4320
(d) ₹ 5320

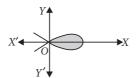
PART - B

Section - III

19. Find the equations of the tangent and the normal to the curve $y = x^3$ at the point P(1, 1).

20. Express
$$\tan^{-1}\left(\frac{\cos x}{1+\sin x}\right)$$
, $x \in \left(\frac{-\pi}{2}, \frac{3\pi}{2}\right)$ in the simplest form.

21. Find the area of region bounded by the curve $y^2 = x(1 - x)^2$, shown in following figure.



22. Suppose 5 men out of 100 and 25 women out of 1000 are good orator. If an orator is chosen at random, find the probability that a male person is selected. Assume that there are equal number of men and women.

23. Evaluate :
$$\int \frac{1}{\sqrt{1-\sin x}} dx$$

de

OR

Evaluate :
$$\int \frac{dx}{1-2\sin x \cos x}$$

24. If $A = \begin{bmatrix} 5a & -b \\ 3 & 2 \end{bmatrix}$ and A adj $A = AA^T$, then find the value of $5a + b$.

25. Find the projection of the vector $2\hat{i} - 3\hat{j} - 6\hat{k}$ on vector joining the points (5, 6, -3) and (3, 4, -2).

OR

If $\vec{a} = 4\hat{i} + 3\hat{j} + 2\hat{k}$ and $\vec{b} = 3\hat{i} + 2\hat{k}$, find $|\vec{b} \times 2\vec{a}|$.

26. Suppose that two cards are drawn at random from a deck of 52 cards. Let *X* be the number of aces obtained. Then, find the probability distribution of *X*.

27. If $y = \sin^{-1}x$, then show that $(1 - x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} = 0$. 28. Find the solution of the differential equation $\frac{dy}{dx} = \frac{y(1+x)}{x(y-1)}$.

OR

Find the particular solution of the differential equation $\log\left(\frac{dy}{dx}\right) = 3x + 4y; y = 0, x = 0$.

Find the equation of tangent to the curve given by $x = a \sin^3 t$, $y = b \cos^3 t$ at a point 29. where $t = \frac{\pi}{2}$

30. Find the point on the parabola $y^2 = 2x$ which is closed to the point (1, 4).

^{31.1} If
$$y = e^{x \sin^2 x} + (\sin x)^x$$
, find $\frac{dy}{dx}$.

INEMALIES The Excellence Key...

OR

Differentiate
$$\frac{2^{x^2+x+1} \cdot \sqrt{4x-1}}{(x^2-1)^{3/2}}$$
 w.r.t. *x*.

32. Let $f: A \to B$ be a function defined as $f(x) = \frac{2x+3}{x-3}$, where $A = R - \{3\}$ and $B = R - \{2\}$. Is the function *f* one-one and onto?

33. Find the area of the region bounded by the curve $y = x^2 + x$, the *x*-axis and the lines x = 2, x = 5.

34. Evaluate :
$$\int_{0}^{1} \tan^{-1} x \, dx$$

OR

Evaluate : $\int_{1}^{2} \frac{dx}{x(1+x^2)}$

35. If f(x) is continuous at x = 0, where

$$f(x) = \begin{cases} \frac{\sin x}{x} + \cos x, & \text{for } x > 0\\ \frac{4(1 - \sqrt{1 - x})}{x}, & \text{for } x < 0 \end{cases}$$
, then find $f(0)$.

Section-V

36. Find the vector and cartesian equation of the line through the point $\hat{i} + \hat{j} - 3\hat{k}$ and perpendicular to the lines $\vec{r} = 2\hat{i} - 3\hat{j} + \lambda(2\hat{i} + \hat{j} - 3\hat{k})$ and $\vec{r} = 3\hat{i} - 5\hat{j} + \mu(\hat{i} + \hat{j} + \hat{k})$.

OR

The four points A(3, 2, -5), B(-1, 4, -3), C(-3, 8, -5) and D(-3, 2, 1) are coplanar. Find the equation of the plane containing them.

37. Find the minimum value of Z = 3x + 4y + 270 subject to the constraints

$$x + y \le 60$$

$$x + y \ge 30$$

$$x \le 40, y \le 40$$

$$x \ge 0, y \ge 0$$

OR

Find the point for which the maximum value of Z = x + y subject to the constraints $2x + 5y \le 100$,

$$\frac{x}{25} + \frac{y}{50} \le 1, x \ge 0, y \ge 0 \text{ is obtained.}$$

38. If $A = \begin{pmatrix} 2 & 3 & 7 \\ 3 & -2 & -1 \\ 1 & 1 & 2 \end{pmatrix}$, find A^{-1} . Using A^{-1} solve the following system of equations :
 $2x + 3y + 7z = 12$
 $3x - 2y - z = 0$
 $x + y + 2z = 4$
If $A = \begin{bmatrix} 1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix}$, find (adj A^{-1}).