Jhe Excellence Key...(M.SCLASS – XII (TEST PAPER-9)

by

MATHEMATICS (CODE-041) Time : 90 MINUTESs

TERM - 1 Maximum Marks : 40

(M.Sc, B.Ed., M.Phill, P.hd)

General Instructions:

- 1. This question paper contains three sections A, B and C. Each part is compulsory.
- 2. Section A has 20 MCQs, attempt any 16 out of 20.
- 3. Section B has 20 MCQs, attempt any 16 out of 20

<u>ARGET MATHEMAT</u>

- 4. Section C has 10 MCQs, attempt any 8 out of 10.
- 5. There is no negative marking.
- 6. All questions carry equal marks.

SECTION – A

In this section, attempt any 16 questions out of Questions 1 - 20. Each Question is of 1 mark weightage. In case more than desirable number of questions are attempted, ONLY first 16 will be considered for evaluation.

Q.1	$\sin\left[\frac{\pi}{2} - \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right] =$
	$(a)\frac{\sqrt{3}}{2}(b)-\frac{\sqrt{3}}{2}(c)$ $\frac{1}{2}$ (d) $-\frac{1}{2}$
Q.2	$If^{f(x)} = \begin{cases} \frac{1 - \cos 4x}{x^2}, & \text{when } x < 0\\ a, & \text{when } x = 0\\ \frac{\sqrt{x}}{\sqrt{(16 + \sqrt{x})} - 4}, & \text{when } x > 0 \end{cases}, \text{ is continuous at } x = 0, \text{ then the value of} \end{cases}$
	'a' will be
	(a) 8 (b) $- 8$ (c) 4 (d) None of these
Q.3	 Which of the following statement is false (i) Adjoint of a symmetric matrix is symmetric, (ii) Adjoint of a unit matrix is a unit matrix, (iii) A(adjA) = (adjA) A = A I and (iv) Adjoint of a diagonal matrix is a diagonal matrix, is/are incorrect
	(a)(i) (b)(ii)(c)(iii) and (iv)(d) None of these
Q.4	If A is a square matrix of order 3 such that $A(adj A) = 4I$, then $adj(adj A) =$ (a) 4A (b)4A(c)16A(d) NONE
Q.5	$f(x) = x^3 - 27x + 5$ is an increasing function, when
	(a) $x < -3$ (b) $ x > 3$ (c) $x \le -3$ (d) $ x < 3$
Q.6	If $A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, then $AA' =$
	(a) ₁₄ (b) $\begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$ (d) None of these
Q.7	Let A = $\{1, 2, 3, \dots, 12\}$ and R be the relation in $A \times A$ defined by
	Target Mathematics by- Dr.Agyat Gupta

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. 7000636110(O) Mobile : <u>9425109601(</u>P)

	$(a b)R(c d) \rightleftharpoons ad - bc (a b) (a b) (a $
	$(a,b)R(c,d) \Leftrightarrow ad = bc$ for (a, b), (c, d) $\in A \times A$. Then the number of
	equivalence class [(2, 4)] (A) 9 (B) 8 (C) 6 (D) none of these
Q.8	If A is a square matrix of order 3×3 such that $ A = 3$, then $ A(adj A) =$
X	(a)3 (b)9(c)27(d) none
Q.9	The angle of intersection of curves $y = x^2$, $6y = 7 - x^3$ at (1, 1) is
	(a) $\pi/4$ (b) $\pi/3$ (c) $\pi/2$ (d) π
Q.10	$\sec^{-1}\left(-\sqrt{2}\right) \in [3\pi, 4\pi] - \{7\pi/2\} =$
	(a) $\frac{11\pi}{4}$ (b) $\frac{15\pi}{4}$ (c) $\frac{13\pi}{4}$ (d)None of these
Q.11	Relation $R = \{(x, y) \in w \times w : y = 2x - 4\}$. $(4, b^2)$ belong to relation R, find
	the value b
	(A) 2 (B) - 2 (C) ± 2 (D) None of these
Q.12	
	If $\cos(x + y) = y \sin x$, then $\frac{dy}{dx} =$
	(a) $-\frac{\sin(x+y)+y\cos x}{\sin x+\sin(x+y)}$ (b) $\frac{\sin(x+y)+y\cos x}{\sin x+\sin(x+y)}$
	(c) $\frac{y \cos x - \sin(x + y)}{\sin x - \sin(x + y)}$ (d) None of these
Q.13	
	Let $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$, then
	a. $A^2 - 4A - 5I_3 = 0$ b. $A^{-1} = \frac{1}{5}(A - 4I_3)$ c. Both a and b. d. None of these
Q.14	$\int (\sqrt{1+2})^2 d^2y dy$
	If $y = \left[\log\left(x + \sqrt{x^2 + 1}\right) \right]^2$, prove that $\left(1 + x^2\right) \frac{d^2 y}{dx^2} + x \frac{dy}{dx} =$
	(a) 2 (b) 2y (c) -2y (d) NONE
Q.15	A is a orthogonal matrix then Write the value of $ A =$
	(a) -1 (b)1(c) ± 1 (d) none
Q.16	If the normal to the curve $y^2 = 5x - 1$, at the point $(1, -2)$ is of the form
	ax - 5y + b = 0, then a and b are
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Q.17	$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & -1 \end{bmatrix}$
	If $A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & 3 & -1 \\ 3 & 1 & 2 \end{bmatrix}$ and <i>I</i> is the unit matrix of 3 rd order, then $(A^2 + 9I) =$
Q.18	(a) $2A$ (b) $4A$ (c) $6A$ (d) None of these The derivative of $\sin^2 x$ with respect to $\cos^2 x$ is
Q.19	(a) $\tan^2 x$ (b) $\tan x$ (c) $-\tan x$ (d) None of these
	For the following shaded area, the linear constraints except $x \ge 0$ and $y \ge 0$,
	are

	2x+y=2		
	(a) $2x + y \le 2, x - y \le 1, x + 2y \le 8$		
	(b) $2x + y \ge 2, x - y \le 1, x + 2y \le 8$		
	(c) $2x + y \ge 2, x - y \ge 1, x + 2y \le 8$		
	(d) $2x + y \ge 2, x - y \ge 1, x + 2y \ge 8$		
Q.20	A given rectangle area is to be fenced off, in a field whose length lies along the		
	river. The least length will be required when		
	(a) length of the field is twice its breadth		
	(b) length of the field is thrice its breadth (c) length of the field is half its breadth		
	(c) length of the field is half its breadth(d) none of these .		
	SECTION – B		
weighta	In this section, attempt any 16 questions out of the Questions 21 - 40. Each Question is of 1 mark weightage. In case more than desirable number of questions are attempted, ONLY first 16 will be considered for evaluation.		
Q.21	Set A has 3 elements and set B has 4 elements. The number of injection that can be defined from A to B is (a) 144 (b) 12(c) 24 (d) 64		
Q.22	The differential equation satisfied by the function		
	$y = \sqrt{\sin x} + \sqrt{\sin x} + \sqrt{\sin x} + \dots \infty$, is		
	(a) $(2y-1)\frac{dy}{dx} - \sin x = 0$ (b) $(2y-1)\cos x + \frac{dy}{dx} = 0$		
	(c) $(2y-1)\cos x - \frac{dy}{dx} = 0$ (d) $(2y-1)\frac{dy}{dx} - \cos x = 0$		
Q.23	For the following feasible region, the linear constraints except $x \ge 0$ and $y \ge 0$,		
2.20	are		
	$ \begin{array}{c} $		
	(a) $x \ge 250$, $y \le 350, 2x + y = 600$ (b) $x \le 250$, $y \le 350, 2x + y = 600$		
	(c) $x \le 250, y \le 350, 2x + y \ge 600$ (d) $x \le 250, y \le 350, 2x + y \le 600$		
Q.24	$\frac{d}{dx}\left(\cos^{-1}\sqrt{\frac{1+\cos x}{2}}\right) =$		
	(a) 1 (b) $\frac{1}{2}$ (c) $\frac{1}{3}$ (d)None of these		

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. 7000636110(O) Mobile : <u>9425109601</u>(P)

Q.25	$(2 \ 1 \ -1)$
	If $A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & -1 & 1 \\ 3 & 1 & -2 \end{pmatrix}$, then find the value of $ 4AI $
((a) 48 (b)64(c)192(d) none
Q.26	The function $f(x) = 2\log(x-2) - x^2 + 4x + 1$ increases in the interval
((a) $(1,2)$ (b) $(2,3)$ (c) $(-\infty,-1)$ (d) $(2,4)$
Q.27	The least value $(\sin^{-1} x)^2 + (\cos^{-1} x)^2$ when x =
((a) $\frac{1}{\sqrt{2}}$ (b) $-\frac{1}{\sqrt{2}}$ (c) 1 (d)None of these
	f A and B be square matrices of the same order, then $AB - BA$ will be aa) Symmetric matrix(b) Skew-symmetric matrixc) Null matrix(d) None of these
Q.29	The interval in which $f(x) = \frac{4\sin x - 2x - x\cos x}{2 + \cos x}$ on $(0, 2\pi)$ is increasing
((a) $\left(0,\frac{\pi}{2}\right)$ (b) $\left(\frac{3\pi}{2},2\pi\right)$ (c) a and b both (d) none
	Let $A = \{1, 2, 3\}$. Then number of equivalence relations containing (1,2) is: a. 1 b. 2 c.3 d.4
Q.31 [If function $f(x) = x-3 + x-4 $, then which statement is true (a) $f(x)$ is differentiable at $x = 3$
	b) $f(x)$ is differentiable at $x = 4$ c) $f(x)$ is not differentiable at $x = 3 \& 4$
	d) none
-	f A, B, C are three $n \times n$ matrices, then $(ABC)' =$ (a) A'B'C' (b) C'B'A' (c) B'C'A' (d) B'A'C'
Q.33	$(i)x + 2y \le 8 $ $(i)(i)x + 2y \le 8 $ $(i)(i)x \ge 0, y \ge 0 $ $(ii)x \ge 0, y \ge 0 $ $(ii)(i)(i)x \ge 0, y \le 0 $ $(ii)(i)(i) \ge 0, y \le 0 $ $(ii)(i)(i)(i) \ge 0, y \le 0 $ $(ii)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)(i)$
	The minimum value of $(ax + by)$, where $xy = c^2$

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. 7000636110(O) Mobile : <u>9425109601</u>(P)

	(a) $c\sqrt{ab}$ (b) $2c\sqrt{ab}$ (c) $2\sqrt{abc}$ (d) none.
Q.35	If $\begin{bmatrix} 1/25 & 0 \\ x & 1/25 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ -a & 5 \end{bmatrix}^{-2}$ then the value of x is :
0.00	125 25 125
Q.36	$\cos^{-1}\left(\frac{2^{x+1}}{1+4^x}\right) =$
	(a) $2\tan^{-1}(2^x)$ (b) $\frac{\pi}{2} + 2\tan^{-1}(2^x)$ (c) $\frac{\pi}{2} - 2\tan^{-1}(2^x)$ (d)None of these
Q.37	If $A = \begin{bmatrix} 4 & 6 & -1 \\ 3 & 0 & 2 \\ 1 & -2 & 5 \end{bmatrix}, B = \begin{bmatrix} 2 & 4 \\ 0 & 1 \\ -1 & 2 \end{bmatrix}$ and $C = \begin{bmatrix} 3 & 1 & 2 \end{bmatrix}$. The expression which is not defined is
Q.38	(a) $B'B$ (b) CAB (c) $A+B'$ (d) A^2+A Let N be the set of natural numbers and the function f:N \rightarrow N be defined by
C	$f(n) = 2n + 3 \forall n \in N$. Then f is :
	a. surjective b. injective c. bijective d. None of these
Q.39	The equation of the tangent to the curve $x = 2\cos^3 \theta$ and $y = 3\sin^3 \theta$ at the point $\theta = \pi/4$ is
	(a) $2x + 3y = 3\sqrt{2}$ (b) $2x - 3y = 3\sqrt{2}$ (c) $3x + 2y = 3\sqrt{2}$ (d) $3x - 2y = 3\sqrt{2}$
Q.40	If $M = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ and $M^2 - \lambda M - I_2 = 0$, then $\lambda =$
	(a) -2 (b) $2(c) - 4$ (d) 4
	SECTION – C
based	section, attempt any 8 questions. Each question is of 1-mark weightage. Questions 41-50 are on a Case-Study. In case more than desirable number of questions are attempted, ONLY first be considered for evaluation.
Q.41	The equation of the tangent to curve $y = be^{-x/a}$ at the point where it crosses y-axis is
	(a) $ax + by = 1$ (b) $ax - by = 1$ (c) $\frac{x}{a} - \frac{y}{b} = 1$ (d) $\frac{x}{a} + \frac{y}{b} = 1$
Q.42	A linear programming problem is as follows: <i>Minimize</i> $Z = 30x + 50y$ subject
	to the constraints, $3x + 5y \ge 15 \ 2x + 3y \le 18 \ x \ge 0$, $y \ge 0$ In the feasible region,
	the minimum value of Z occurs at
	a) a unique point b) no point c) infinitely many points d) two points only
Q.43	The function $\sin x(1 + \cos x)$ at $x = \frac{\pi}{3}$, is
	(a) Maximum (b) Minimum
Q.44	(c) Neither maximum nor minimum(d)None of these For an abjective function $Z = ax + by$, where $a, b > 0$; the correspondence of the
דדיע	For an objective function $Z = ax + by$, where $a, b > 0$; the corner points of the feasible region determined by a set of constraints (linear inequalities) are (0, 20), (10, 10), (30, 30) and (0, 40). The condition on a and b such that the maximum Z occurs at both the points (30, 30) and (0, 40) is:
	a) $b - 3a = 0$ b) $a = 3b$ c) $a + 2b = 0$ d) $2a - b = 0$

Q.45	
Q.+J	$\begin{vmatrix} x & 3 & 7 \\ 2 & x & 2 \end{vmatrix} = 0$
	If -9 is a root of the equation $\begin{vmatrix} x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x \end{vmatrix} = 0$ then the other two roots are
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Shreya got a rectangular parallelopiped shaped box and spherical ball inside it as return gift. Sides of the box are x , $2x$ and $x/3$, while radius of the ball is r .
	Based on the above information, answer the following questions.
Q.46	If S represents the sum of volume of parallelopiped and sphere, then S can be
	written as
	$\left(a) \frac{4x^3}{3} + \frac{2}{2}\pi r^2 \qquad (b) \frac{2x^2}{3} + \frac{4}{3}\pi r^2 \qquad (c) \frac{2x^3}{3} + \frac{4}{3}\pi r^3 \qquad (d) \frac{2}{3}x + \frac{4}{3}\pi r$
Q.47	If sum of the surface areas of the box and ball are given to be constant k^2 , then x
	is equal to
	(a) $\sqrt{\frac{k^2 - 4\pi r^2}{6}}$ (b) $\sqrt{\frac{k^2 - 4\pi r}{6}}$ (c) $\sqrt{\frac{k^2 - 4\pi}{6}}$ (d) None of these
Q.48	The radius of the ball, when S is minimum, is
	(a) $\sqrt{\frac{k^2}{54+\pi}}$ (b) $\sqrt{\frac{k^2}{54+4\pi}}$ (c) $\sqrt{\frac{k^2}{64+3\pi}}$ (d) $\sqrt{\frac{k^2}{4\pi+3}}$
Q.49	Relation between length of the box and radius of the ball can be represented as
	(a) $x = 2r$ (b) $x = \frac{r}{2}$ (c) $x = \frac{r}{2}$ (d) $x = 3r$
Q.50	Minimum value of S is
	(a) $\frac{k^2}{2(3\pi+54)^{2/3}}$ (b) $\frac{k}{(3\pi+54)^{3/2}}$ (c) $\frac{k^3}{3(4\pi+54)^{1/2}}$ (d) None of these

Target Mathematics by Dr. Agyat Gupta

