.....International School

Academic Year 2021 – 2022

PERIODIC TEST - 2

Name:	Subject: Mathematics	Date: 30-9-2021
Class: 10	Set: A	Duration: 40 Minutes
Section:	Max. Marks: 25	Marks Obtained:

General Instructions:

- 1) The question paper contains 25 Multiple Choice Questions of 1 mark each.
- 2) All questions are compulsory
- 3) Use of calculators is not allowed
- 4) There is no negative marking.

Questions 1 to 25:

 $(1 \times 25 = 25)$

1) If in two triangles ABC and PQR, $\frac{AB}{QR} = \frac{BC}{PR} = \frac{CA}{PQ}$, then:

a.
$$\triangle PQR \sim \triangle CAB$$

b.
$$\triangle CBA \sim \triangle PQR$$

d.
$$\triangle$$
BCA ~ \triangle PQR

2) The lengths of a diagonal of a rhombus are 18cm and 24cm. Then the length of the side of the rhombus is _____

a. 15cm

b.30cm

c.28cm

d.26cm

(OR)

In the figure given below, $\angle BAC = 90^{\circ}$ and $AD \bot BC$ then:

a. BD. $CD = BC^2$

b. AB.
$$AC = BC^2$$

c. BD.
$$CD = AD^2$$

d. AB.
$$AC = AD^2$$

3) The sides of two similar triangles are in the ratio 7:9, then what is the ratio of their areas?

a. 7:9

b. 14:18

c. 9:7

d. 49:81

- 4) To place a pole vertical on the ground a guy wire of length 26 m is attached to it at a point 10 m away from its foot, then what will be the length of pole?
 - a. 10 m
- b. 28 m

- c. 20 m
- d. 24 m

5) In $\triangle ABC$, DE||BC, then the value of x is _____cm.

- a. 3 cm
- b. 4 cm

- c. 5cm
- d.8cm
- 6) If \triangle ABC \sim \triangle EDF and \triangle ABC is not similar to \triangle DEF, then which of the following is not true?

a.
$$BC \cdot EF = AC \cdot FD$$

b.
$$AB \cdot EF = AC \cdot DE$$

c. BC
$$\cdot$$
 DE = AB \cdot EF

d. BC
$$\cdot$$
 DE = AB \cdot FD

- 7) The perimeters of two similar triangles \triangle ABC and \triangle PQR are 35cm and 45cm respectively, then the ratio of the areas of two similar triangles is _____
 - a. 36:49
- b. 49:81

- c. 25:36
- d.25:49
- 8) In the given figure line BD is parallel to CE. AB = 1.5 cm, BC = 6 cm, AD = 2 cm. Find DE.

- a. 6 cm
- b. 8 cm
- c. 4 cm
- d. cannot be found.
- 9) In a equilateral triangle of side $3\sqrt{3}$ cm, the length of the altitude is _____
 - a. 3cm
- b. 4cm
- c. 4.5cm
- d. 5cm
- 10) If the distance between A(k,3) and B(2,3) is 5, then the value of k is:
 - a. 5
- b.6

c.7

- d. 8
- 11) The perimeter of the triangle with vertices (0,4),(0,0) and (3,0) is _____
 - a. 5
- b. 12
- c. 11
- d. $7 + \sqrt{5}$
- 12) If the point (x,y) is equidistant from the point (2,1) and (1,-2), then:
 - a. x+3y=0
- b. 3x+y=0
- c. x+2y=0
- d. 3x+2y=0
- 13) The line segment joining the points(-3,-4) and (1,-2) is divided by the y-axis in the ratio

a. 1:3

b. 2:3

c. 3:1

d. 2:1

14) If four vertices of a parallelogram taken in order are (-3,-1), (a,b), (3,3) and (4,3), then a:b=

a. 1:4

b. 4:1

c. 1:2

d. 2:1

15) The point which divides the line segment joining the points (7,-6) and (3,4) in ratio 1:2 internally lies in the:

a. I quadrant

b. II quadrant

c. III quadrant

d. IV quadrant

16) If the point (x,4) lies on a circle whose center is at the origin and radius is 5, then x=____

a. ±5

b. ±3

c.0

d. ±4

17) The distance of the point P(-6,8) from the origin is

a. 8

b. 2

c. 10

d. 6

18) If R(5,6) is the midpoint of the line segment AB joining the points A(6,5) and B(4,y) then y equals

a. 5

b. 7

c. 12

d. 6

19) If $\sin \alpha = \frac{1}{2}$ and $\cos \beta = \frac{1}{2}$, then the value of $(\alpha + \beta)$

a. 0°

b. 30°

c. 60°

d. 90°

20). In the adjoining figure, the length of BC is

a. $2\sqrt{3}$ cm

b. $3\sqrt{3}$ cm

c. $4\sqrt{3}$ cm

d. 3 cm

 $21)\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} =$

a. $sin\theta - cos\theta$

b. $sec\theta - tan\theta$

c. $sec\theta + tan\theta$

d. $sin\theta + cos\theta$

 $22)\frac{1-tan^2\theta}{1+tan^2\theta}$

a. 1

b. $cos^2 θ$ - $sin^2 θ$

c. $\sin^2\theta$

d. $\cos^2\theta$

23). If $tan(A + B) = \sqrt{3}$ and $tan(A - B) = 1/\sqrt{3}$, A > B, then the value of A is _____

a. 45°

b. 60°

c. 90°

d. 30°

24) If $\cos A = \frac{4}{5}$, then the value of tanA is

a. $\frac{3}{5}$

b. $\frac{3}{4}$

c. $\frac{4}{3}$

 $d.\frac{1}{8}$

25) $\sin^2 60^\circ$ - 2 tan 45° - $\cos^2 30^\circ$ = ? a. 2 b. -2

c. 1

d. -1