TA	RGET MATHEMATICS Dr. AGYAT GUPTA The Excellence Key (M.Sc, B.Ed., M.Phill, P.hd)		
~	(CODE-041) CLASS - XII (PRE - BOARD) TERM -I TMC-TS-AG-TS-1-OBJ-(MCQ)		
General 1. This 2. Secti 3. Secti 4. Secti 5. There	D MINUTES Maximum Marks : 40 ral Instructions: Maximum Marks : 40 question paper contains three sections – A, B and C. Each part is compulsory. Image: Compute contains three sections – A, B and C. Each part is compulsory. on - A has 20 MCQs, attempt any 16 out of 20. Image: Compute contains three sections – A, B and C. Each part is compulsory. on - B has 20 MCQs, attempt any 16 out of 20. Image: Compute contains three sections – A, B and C. Each part is compulsory. on - B has 20 MCQs, attempt any 16 out of 20. Image: Compute contains three sections – A, B and C. Each part is compulsory. on - B has 20 MCQs, attempt any 16 out of 20. Image: Compute contains three sections – A, B and C. Each part is compulsory. on - C has 10 MCQs, attempt any 8 out of 10. Image: Compute contains three sections – A, B and C. Each part is compulsory. uestions carry equal marks Image: Compute contains three sections – A, B and C. Each part is compulsory.		
 6. All questions carry equal marks. SECTION – A In this section, attempt any 16 questions out of Questions 1 – 20. Each Question is of 1 mark weightage. In case more than desirable number of questions are attempted, ONLY first 16 will be considered for evaluation. 			
Q.1	$\cos^{-1}\left(\frac{a}{x}\right) - \cos^{-1}\left(\frac{b}{x}\right) = \cos^{-1}\left(\frac{1}{b}\right) - \cos^{-1}\left(\frac{1}{a}\right), a \ge 1, b \ge 1. \text{ then } \mathbf{x} =$ (a) $\pm ab$ (b) $-ab$ (c) ab (d) none		
Q.2	If the function $f(x) = \begin{cases} 1 + \sin \frac{\pi x}{2}, \text{ for } -\infty < x \le 1 \\ ax + b, \text{ for } 1 < x < 3 \\ 6 \tan \frac{x \pi}{12}, \text{ for } 3 \le x < 6 \end{cases}$ is continuous in the interval		
	$(-\infty, 6)$, then the values of a and b are respectively (a) 0, 2 (b) 1, 1 (c) 2, 0 (d) 2, 1		
Q.3	(a) 0, 2 (b) 1, 1 (c) 2, 0 (d) 2, 1 Sum of all element of the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ is (a)1 (b) 3 (c) o (d) none		
Q.4	(a)1 (b) 3 (c) o (d) none If $A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$, then $A^n =$ (a) $\begin{bmatrix} na & 0 & 0 \\ 0 & nb & 0 \\ 0 & 0 & nc \end{bmatrix}$ (b) $\begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & n \end{bmatrix}$ (c) $\begin{bmatrix} a^n & 0 & 0 \\ 0 & b^n & 0 \\ 0 & 0 & c^n \end{bmatrix}$ (d) None of these		
Q.5	y=x(x-3) ² decreases for the values of x given by: (a) 1 <x<3 (b)="" (c)="" x="" x<0="">0 (d) $0 < x < \frac{3}{2}$</x<3>		
Q.6	If $A = \begin{bmatrix} 1 & 2 \\ -3 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 0 \\ 2 & 3 \end{bmatrix}$, then		
Q.7	(a) $A^2 = A$ (b) $B^2 = B$ (c) $AB \neq BA$ (d) $AB = BA$ Let R be a relation on N defined by $R = \{(1+x, 1+x^2) : x \le 5, x \in N\}$. Which of the following is false? a. R = $\{(2,2), (3,5), (4,10), (5,17), (6,25)\}$ b. Domain of R = $\{2,3,4,5,6\}$ c. Range of R = $\{2,5,10,17,26\}$ d. None of the above		

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

Q.8	If $\begin{bmatrix} 1 & 1 & 1 \\ 1 & -2 & -2 \\ 1 & 3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix}$, then $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ is equal to
	$(\mathbf{a})\begin{bmatrix}1\\1\\1\end{bmatrix} (\mathbf{b})\begin{bmatrix}1\\-2\\3\end{bmatrix} (\mathbf{c})\begin{bmatrix}1\\-2\\1\end{bmatrix} (\mathbf{d})\begin{bmatrix}1\\2\\-3\end{bmatrix}$
Q.9	The equation of the normal to the curve $x^2 = 4y$ which passes through the point
	(1,2) (a) $y = 1$ (b) $y + y = 2(a)$ $2y + y = 4(d)$ None of these
Q.10	(a) $x - y = 1$ (b) $x + y = 3(c)$ $2x + y = 4$ (d) None of these If $a > b > c > 0$, then $\cot^{-1}\left(\frac{1+ab}{a-b}\right) + \cot^{-1}\left(\frac{1+bc}{b-c}\right) + \cot^{-1}\left(\frac{1+ca}{c-a}\right) =$
	If $a > b > c > 0$, then $\cot^{-1}\left(\frac{1}{a-b}\right) + \cot^{-1}\left(\frac{1}{b-c}\right) + \cot^{-1}\left(\frac{1}{c-a}\right) =$
0.11	(a) π (b) 2π (c) 0 (d) None of these
Q.11	If <i>R</i> is an equivalence relation on a set <i>A</i> , then R^{-1} is
	(a) Reflexive only(b) Symmetric but not transitive
Q.12	(c)Equivalence(d) None of these If $f(x) = mx + c$, $f(0) = f'(0) = 1$ then $f(2) = 1$
Q.12	(a) 1 (b) 2 (c) 3 (d) -3
Q.13	$\begin{bmatrix} a & 0 & 0 \end{bmatrix}$
	If $A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$, then the value of adj A
	$\begin{bmatrix} 0 & 0 & a \end{bmatrix}, \text{ then the value of } adj X$
	(a) a^{6} (b) a^{3} (c) a^{9} (d) none
Q.14	If $y = \cot^{-1}(x^2)$, then $\frac{dy}{dx}$ is equal to
	2x $2x$ $-2x$ $-2x$
	(a) $\frac{2x}{1+x^4}$ (b) $\frac{2x}{\sqrt{1+4x}}$ (c) $\frac{-2x}{1+x^4}$ (d) $\frac{-2x}{\sqrt{1+x^2}}$
Q.15	$\begin{bmatrix} a & b \\ -b & a \end{bmatrix} \begin{bmatrix} a & -b \\ b & a \end{bmatrix} =$
	(a) $(a^2 + b^2)I$ (b) $(a^2 - b^2)I$ (c) $(a+b)I$ (d) NONE
Q.16	If $y = 4x - 5$ is tangent to the curve $y^2 = px^3 + q$ at (2, 3), then
	(a) $p = 2, q = -7$ (b) $p = -2, q = 7$ (c) $p = -2, q = -7$ (d) $p = 2, q = 7$
Q.17	If A is a square matrix of order 3 x 3 such that $ A = 2$. Write the value of $ A^T A $
	(a) 4 (b) 2 (c) 16(d) none
Q.18	Differential coefficient of $\cos^{-1}(\sqrt{x})$ with respect to $\sqrt{(1-x)}$ is
	(a) \sqrt{x} (b) $-\sqrt{x}$ (c) $\frac{1}{\sqrt{x}}$ (d) $-\frac{1}{\sqrt{x}}$
Q.19	The maximum value of $\mu = 3x + 4y$ subjected to the conditions $x + y \le 40$, $x + y \le 40$
	$2y \le 60; x, y \ge 0$ is
Q.20	(a) 130 (b) 120 (c) 40 (d) 140 The height of the largest some that can be inserihed in a subara of radius 12 is
Q.20	The height of the largest cone that can be inscribed in a sphere of radius 12 is (a) 16 (b) 8 (c) 18 (d) NONE
	SECTION – B
	section, attempt any 16 questions out of the Questions 21 - 40. Each Question is of 1 mark
-	ge. In case more than desirable number of questions are attempted, ONLY first 16 will idered for evaluation.
Q.21	Set A has 3 elements and set B has 4 elements. The number of invertible
	function that can be defined from A to B is

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

	(a) 9 (b) 24(c) 6 (d) 0
Q.22	If $x = a\sin\theta$ and $y = b\cos\theta$, then $\frac{d^2y}{dx^2}$ is
	(a) $\frac{a}{b^2} \sec^2 \theta$ (b) $\frac{-b}{a} \sec^2 \theta$ (c) $\frac{-b}{a^2} \sec^3 \theta$ (d) $\frac{-b}{a^2} \sec^3 \theta$
Q.23	The maximum value of $Z = 4 x + 3y$ subjected to the constraints $3x + 2y \ge 160$,
	$5x + 2y \ge 200$, $x + 2y \ge 80$, $x, y \ge 0$ is (a) 320 (b) 300 (c) 230 (d) None of these
Q.24	If $y = x^{\sin x}$, then $\frac{dy}{dx} =$
	(a) $\frac{x \cos x \cdot \log x + \sin x}{x} \cdot x^{\sin x}$ (b) $\frac{y[x \cos x \cdot \log x + \cos x]}{x}$
	(c) $y[x \sin x \cdot \log x + \cos x]$ (d)None of these
Q.25	If $D = diag(d_1, d_2, d_3,, d_n)$ where $d_i \neq 0$ for all $i = 1, 2, 3,, n$, then D^{-1} is equal to
	(a) D (b) $diag(d_1^{-1}, d_2^{-1}, d_3^{-1}, \dots, d_n^{-1})$ (c) I (d) None of these
Q.26	The function f given by $f(x) = \log \sin x$ is strictly increasing
	(a) $\left(0,\frac{\pi}{2}\right)$ (b) $\left(\frac{\pi}{2},\pi\right)$ (c) (0, π) (d) None of these
Q.27	$sec[cot^{-1}{sin(tan^{-1}(cos ec(cos^{-1}\frac{1}{2})))}]$
	(a) $\frac{\sqrt{11}}{2}$ (b) $\sqrt{\frac{11}{2}}$ (c) $\frac{11}{2}$ (d)NONE
Q.28	
	If $A = \begin{vmatrix} 1 & 4 & 9 \\ 1 & 8 & 27 \end{vmatrix}$, then the value of $ Coff A $ is
	(a) $36(b)72(c)$ 144 (d) None of these
Q.29	If $f(x) = \cos x$, then
	(a) $f(x)$ is strictly decreasing in $(0, \pi)$
	(c) f(x) is neither increasing nor decreasing in $(\pi, 2\pi)$
	(b) $f(x)$ is strictly increasing in $(0,2\pi)$
Q.30	(d) All the above are correct Let $A = \{1, 2, 3, \dots, 9\}$ and R be the relation in $A \times A$ defined by (a, b)
2.30	R(c, d) if $a + d = b + c$ for (a, b), (c, d) $\in A \times A$. Then the number of equivalence
	class [(2, 5)]
	(A) 6 (B) 8 (C) 7 (D) none of these
Q.31	$\int \mathbf{x} + \lambda, \mathbf{x} < 3$
	If $f(x) = \begin{cases} 4, x = 3 \\ 3x - 5, x > 3 \end{cases}$ is continuous at $x = 3$, then $\lambda =$
Q.32	(a) 4 (b) 3(c) 2 (d) 1 If $B = \begin{bmatrix} 3 & -4 \\ -1 & 2 \end{bmatrix}$ find matrix A such that AB = I
	If $B = \begin{bmatrix} -1 & 2 \end{bmatrix}$ find matrix A such that AB = I
	(A) $\begin{bmatrix} 1 & 2 \\ 1/2 & 3/2 \end{bmatrix}$ (B) $\begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 2 \\ 1/2 & -3/2 \end{bmatrix}$ (D) NONE
Q.33	To maximize the objective function $z = 2x + 3y$ under the constraints $x + y \le 1$
	$30, x - y \ge 0, y \le 12, x \le 20, y \ge 3 \text{ and } x, y \ge 0, \text{ is at}$
	(a) $x = 12$, $y = 18$ (b) $x = 18$, $y = 12$ (c) $x = 12$, $y = 12$ (d) $x = 20$, $y = 10$
	Target Mathematics by- Dr.Agyat Gupta

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

Q.34	The absolute maximum values of the function f given by
	$f(x) = \sin^2 x - \cos x, x \in [0, \pi].$
	(a) 1 (b) $\frac{5}{4}$ (c) -1 (d) NONE
0.35	
Q.35	If $X_{m \times 4} Y_{p \times 4} = Z_{5 \times b}$, for three matrices X,Y,Z, find the values of m, p and b.
	(A) $m = 4, p = 5, b = 4$ (B) $m = 4, p = 4, b = 5$ (C) $m = 5, p = 4, b = 4$ (D) NONE
Q.36	If $\cos^{-1} x + \cos^{-1} y + \cos^{-1} z = 3\pi$, then $xy + yz + zx =$
0.25	(a) 0 (b)1(c)3(d)-3
Q.37	Let $A = [a_{ij}]_{n \times n}$ be a square matrix and let c_{ij} be cofactor of a_{ij} in A, then
0.20	(a) $ C = A $ (b) $ C = A ^{n-1}$ (c) $ C = A ^{n-2}$ (d) None of these
Q.38	Let f and g be functions defined by $f(x) = \frac{x}{x+1}$, $g(x) = \frac{x}{1-x}$, then $(f \circ g)(x)$ is
	(a) $\frac{1}{x}$ (b) $\frac{1}{x-1}$ (c) $x-1$ (d) x
Q.39	At what point on the curve $x^3 - 8a^2y = 0$, the slope of the normal is $\frac{-2}{3}$
	(a) $(a,a)(b)(2a,-a)(c)$ (2a,a) (d) None of these
Q.40	
~	If $A = \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$ is such that $A^2 = I$, then
	(A) $1 + \alpha^2 + \beta \gamma = 0$ (B) $1 - \alpha^2 + \beta \gamma = 0$
	(C) $1-\alpha^2-\beta\gamma=0$ (D) $1+\alpha^2-\beta\gamma=0$
In this	SECTION – C section, attempt any 8 questions. Each question is of 1-mark weightage. Questions 41-50 are
based	on a Case-Study. In case more than desirable number of questions are attempted, ONLY first be considered for evaluation.
Q.41	
	For the curve $y = 4x^3 - 2x^5$, find all point at which the tangent passes through
	For the curve $y = 4x^3 - 2x^5$, find all point at which the tangent passes through origin.
	origin. (a) $(0, 0)(b)(1,2)$ (c) $(-1, -2)$ (d) all of these
Q.42	origin.(a) (0, 0)(b)(1,2) (c) (-1, -2)(d) all of theseA firm makes pants and shirt. A shirt takes 2 hour on machine and 3 hour of
Q.42	origin. (a) (0, 0)(b)(1,2) (c) (-1, -2) (d) all of these A firm makes pants and shirt. A shirt takes 2 hour on machine and 3 hour of man labour while a pant takes 3 hour on machine and 2 hour of man labour. In a
Q.42	origin. (a) (0, 0)(b)(1,2) (c) (-1, -2) (d) all of these A firm makes pants and shirt. A shirt takes 2 hour on machine and 3 hour of man labour while a pant takes 3 hour on machine and 2 hour of man labour. In a week there are 70 hour of machine and 75 hour of man labour available. If the
Q.42	origin.(a) (0, 0)(b)(1,2) (c) (-1, -2)(d) all of theseA firm makes pants and shirt. A shirt takes 2 hour on machine and 3 hour of man labour while a pant takes 3 hour on machine and 2 hour of man labour. In a
Q.42	origin. (a) (0, 0)(b)(1,2) (c) (-1, -2) (d) all of these A firm makes pants and shirt. A shirt takes 2 hour on machine and 3 hour of man labour while a pant takes 3 hour on machine and 2 hour of man labour. In a week there are 70 hour of machine and 75 hour of man labour available. If the firm determines to make x shirts and y pants per week, then for this the linear
Q.42	origin. (a) (0, 0)(b)(1,2) (c) (-1, -2) (d) all of these A firm makes pants and shirt. A shirt takes 2 hour on machine and 3 hour of man labour while a pant takes 3 hour on machine and 2 hour of man labour. In a week there are 70 hour of machine and 75 hour of man labour available. If the firm determines to make x shirts and y pants per week, then for this the linear constraints are
Q.42	origin. (a) $(0, 0)(b)(1,2)$ (c) $(-1, -2)$ (d) all of these A firm makes pants and shirt. A shirt takes 2 hour on machine and 3 hour of man labour while a pant takes 3 hour on machine and 2 hour of man labour. In a week there are 70 hour of machine and 75 hour of man labour available. If the firm determines to make x shirts and y pants per week, then for this the linear constraints are (a) $x \ge 0$, $y \ge 0,2x + 3y \ge 70,3x + 2y \ge 75$
	origin. (a) $(0, 0)(b)(1,2)$ (c) $(-1, -2)$ (d) all of these A firm makes pants and shirt. A shirt takes 2 hour on machine and 3 hour of man labour while a pant takes 3 hour on machine and 2 hour of man labour. In a week there are 70 hour of machine and 75 hour of man labour available. If the firm determines to make x shirts and y pants per week, then for this the linear constraints are (a) $x \ge 0$, $y \ge 0.2x + 3y \ge 70.3x + 2y \ge 75$ (b) $x \ge 0$, $y \ge 0.2x + 3y \le 70.3x + 2y \ge 75$ (c) $x \ge 0$, $y \ge 0.2x + 3y \ge 70.3x + 2y \le 75$ (d) $x \ge 0$, $y \ge 0.2x + 3y \le 70.3x + 2y \le 75$
Q.42 Q.43	origin. (a) $(0, 0)(b)(1,2)$ (c) $(-1, -2)$ (d) all of these A firm makes pants and shirt. A shirt takes 2 hour on machine and 3 hour of man labour while a pant takes 3 hour on machine and 2 hour of man labour. In a week there are 70 hour of machine and 75 hour of man labour available. If the firm determines to make x shirts and y pants per week, then for this the linear constraints are (a) $x \ge 0$, $y \ge 0.2x + 3y \ge 70.3x + 2y \ge 75$ (b) $x \ge 0$, $y \ge 0.2x + 3y \le 70.3x + 2y \ge 75$ (c) $x \ge 0$, $y \ge 0.2x + 3y \ge 70.3x + 2y \le 75$ (d) $x \ge 0$, $y \ge 0.2x + 3y \le 70.3x + 2y \le 75$ A point on the hypotenuse of a right triangle is at a distance '8' and '27' from
	origin. (a) $(0, 0)(b)(1,2)$ (c) $(-1, -2)$ (d) all of these A firm makes pants and shirt. A shirt takes 2 hour on machine and 3 hour of man labour while a pant takes 3 hour on machine and 2 hour of man labour. In a week there are 70 hour of machine and 75 hour of man labour available. If the firm determines to make x shirts and y pants per week, then for this the linear constraints are (a) $x \ge 0$, $y \ge 0.2x + 3y \ge 70.3x + 2y \ge 75$ (b) $x \ge 0$, $y \ge 0.2x + 3y \le 70.3x + 2y \ge 75$ (c) $x \ge 0$, $y \ge 0.2x + 3y \ge 70.3x + 2y \le 75$ (d) $x \ge 0$, $y \ge 0.2x + 3y \le 70.3x + 2y \le 75$ A point on the hypotenuse of a right triangle is at a distance '8' and '27' from the sides of the triangle. The minimum length of the hypotenuse is
Q.43	origin. (a) $(0, 0)(b)(1,2)$ (c) $(-1, -2)$ (d) all of these A firm makes pants and shirt. A shirt takes 2 hour on machine and 3 hour of man labour while a pant takes 3 hour on machine and 2 hour of man labour. In a week there are 70 hour of machine and 75 hour of man labour available. If the firm determines to make x shirts and y pants per week, then for this the linear constraints are (a) $x \ge 0$, $y \ge 0.2x + 3y \ge 70.3x + 2y \ge 75$ (b) $x \ge 0$, $y \ge 0.2x + 3y \le 70.3x + 2y \ge 75$ (c) $x \ge 0$, $y \ge 0.2x + 3y \le 70.3x + 2y \le 75$ (d) $x \ge 0$, $y \ge 0.2x + 3y \le 70.3x + 2y \le 75$ (d) $x \ge 0$, $y \ge 0.2x + 3y \le 70.3x + 2y \le 75$ A point on the hypotenuse of a right triangle is at a distance '8' and '27' from the sides of the triangle. The minimum length of the hypotenuse is (a) $[13]^{3/2}$ (b) $[35]^{3/2}$ (c) $[13]^{2/3}$ (d) none
	origin. (a) $(0, 0)(b)(1,2)$ (c) $(-1, -2)$ (d) all of these A firm makes pants and shirt. A shirt takes 2 hour on machine and 3 hour of man labour while a pant takes 3 hour on machine and 2 hour of man labour. In a week there are 70 hour of machine and 75 hour of man labour available. If the firm determines to make x shirts and y pants per week, then for this the linear constraints are (a) $x \ge 0$, $y \ge 0.2x + 3y \ge 70.3x + 2y \ge 75$ (b) $x \ge 0$, $y \ge 0.2x + 3y \le 70.3x + 2y \ge 75$ (c) $x \ge 0$, $y \ge 0.2x + 3y \le 70.3x + 2y \le 75$ (d) $x \ge 0$, $y \ge 0.2x + 3y \le 70.3x + 2y \le 75$ (d) $x \ge 0$, $y \ge 0.2x + 3y \le 70.3x + 2y \le 75$ A point on the hypotenuse of a right triangle is at a distance '8' and '27' from the sides of the triangle. The minimum length of the hypotenuse is (a) $[13]^{3/2}$ (b) $[35]^{3/2}$ (c) $[13]^{2/3}$ (d) none A whole sale merchant wants to start the business of cereal with Rs. 24,000.
Q.43	origin. (a) $(0, 0)(b)(1,2)$ (c) $(-1, -2)$ (d) all of these A firm makes pants and shirt. A shirt takes 2 hour on machine and 3 hour of man labour while a pant takes 3 hour on machine and 2 hour of man labour. In a week there are 70 hour of machine and 75 hour of man labour available. If the firm determines to make x shirts and y pants per week, then for this the linear constraints are (a) $x \ge 0$, $y \ge 0.2x + 3y \ge 70.3x + 2y \ge 75$ (b) $x \ge 0$, $y \ge 0.2x + 3y \ge 70.3x + 2y \ge 75$ (c) $x \ge 0$, $y \ge 0.2x + 3y \ge 70.3x + 2y \le 75$ (d) $x \ge 0$, $y \ge 0.2x + 3y \ge 70.3x + 2y \le 75$ (d) $x \ge 0$, $y \ge 0.2x + 3y \le 70.3x + 2y \le 75$ A point on the hypotenuse of a right triangle is at a distance '8' and '27' from the sides of the triangle. The minimum length of the hypotenuse is (a) $[13]^{3/2}$ (b) $[35]^{3/2}$ (c) $[13]^{2/3}$ (d) none A whole sale merchant wants to start the business of cereal with Rs. 24,000. Wheat is Rs. 400 per quintal and rice is Rs. 600 per quintal. He has capacity to
Q.43	origin. (a) $(0, 0)(b)(1,2)$ (c) $(-1, -2)$ (d) all of these A firm makes pants and shirt. A shirt takes 2 hour on machine and 3 hour of man labour while a pant takes 3 hour on machine and 2 hour of man labour. In a week there are 70 hour of machine and 75 hour of man labour available. If the firm determines to make x shirts and y pants per week, then for this the linear constraints are (a) $x \ge 0$, $y \ge 0.2x + 3y \ge 70.3x + 2y \ge 75$ (b) $x \ge 0$, $y \ge 0.2x + 3y \le 70.3x + 2y \ge 75$ (c) $x \ge 0$, $y \ge 0.2x + 3y \le 70.3x + 2y \le 75$ (d) $x \ge 0$, $y \ge 0.2x + 3y \le 70.3x + 2y \le 75$ A point on the hypotenuse of a right triangle is at a distance '8' and '27' from the sides of the triangle. The minimum length of the hypotenuse is (a) $[13]^{3/2}$ (b) $[35]^{3/2}$ (c) $[13]^{2/3}$ (d) none A whole sale merchant wants to start the business of cereal with Rs. 24,000.

	maximum profit the objective function is
	400x 600y
	(a) $25x + 40y$ (b) $40x + 25y$ (c) $400x + 600y$ (d) $-\frac{1}{40} + \frac{1}{25}$
Q.45	If $\begin{vmatrix} y+z & x & y \\ z+x & z & x \\ x+y & y & z \end{vmatrix} = k(x+y+z)(x-z)^2$, then $k =$
	(a) 2 (b) 1(c) 3 (d) -1
	CASE STUDY A magazine company in a town has 5000 subscriber on its list and collects fix charges of Rs 3000 per year from each subscriber. The company proposes to increase the annual charges and it is believed that for every increase of Rs 1, one subscriber will discontinue service.
	MAGAZINE
Q.46	Based on the above information, answer the following questions. If x denote the amount of increase in annual charges, then revenue R, as a function of x can be represented as $(x) = \frac{R(x)}{2000} \times \frac{5000}{x} = \frac{1}{2000} \times \frac{5000}{x} = \frac{1}{2000} \times \frac{1}{2000} = \frac{1}{2000} \times \frac{1}{2000} \times \frac{1}{2000} \times \frac{1}{2000} = \frac{1}{2000} \times $
	(a) $R(x) = 3000 \times 5000 \times x$ (b) $R(x) = (3000 - 2x)(5000 + 2x)$
	(c) $R(x) = (5000 + x)(3000 - x)$ (d) $R(x) = (3000 + x)(5000 - x)$
Q.47	If magazine company increases Rs 500 as annual charges, then <i>R</i> is equal to (a) <i>Rs</i> 15750000 (b) <i>Rs</i> 16750000 (c) <i>Rs</i> 17500000 (d) <i>Rs</i> 15000000
Q.48	If revenue collected by the magazine company is Rs 15640000, then value of amount increased as annual charges for each subscriber, is (a) 400 (b) 16000 (c) Both (a) and (b) (d) None of these
Q.49	What amount of increase in annual charges will bring maximum revenue?
Q.49 Q.50	