Target Mathematics by Dr. Agyat Gupta

Sample Paper CODE - AG-TMC-TS-TERM-1- 002

General Instructions

- 1. This question paper contains three sections A, B and C. Each part is compulsory.
- 2. Section-A has 20 MCQs, attempt any 16 out of 20.
- 3. Section-B has 20 MCQs, attempt any 16 out of 20.
- 4. Section-C has 10 MCQs, attempt any 8 out of 10.
- 5. All questions carry equal marks.
- 6. There is no negative marking.

SECTION-A

In this section, attempt **any 16** questions out of questions 1-20. Each question is of 1 mark weightage.

_					
1.	The relation $R = \{ (1, 1), (2, 2), \}$	$(3,3)$ on the set $\{1,2,3\}$ is :			
	(a) symmetric only		(b)	reflexive only	
	(c) an equivalence relation		(d)	transitive only	
2.	$\begin{vmatrix} \cos 15^{\circ} & \sin 15^{\circ} \\ \sin 75^{\circ} & \cos 75^{\circ} \end{vmatrix} =$				
	(a) 0	(b) 5	(c)	3	(d) 7
3.	If $\sin y = x \sin (a + y)$, then	$\frac{dy}{dx}$ is equal to :			
	(a) $\frac{\sin\sqrt{a}}{\sin(a+y)}$		(b)	$\frac{\sin^2 (a+y)}{\sin a}$	
	(c) $\sin(a+y)$		(d)	None of these	
4.	Find the maximum profit that	at a company can make, if the pr	ofit fu	nction is given by $P(x) =$	$41 + 24x - 18x^2$.
	(a) 25	(b) 43	(c)	62	(d) 49
5.	If $-3x + 17 < -13$, then				
	(a) $x \in (10, \infty)$		(b)	$x \in [10, \infty)$	
	(c) $x \in (-\infty, 10]$		(d)	$x \in [-10, 10)$	
6.	Let L denote the set of all stra	aight lines in a plane. Let a relati	on R ł	be defined by $\alpha R \beta \Leftrightarrow \alpha$	$\perp \beta, \alpha, \beta \in L$. Then, R is
	(a) Reflexive		(b)	Symmetric	
	(c) Transitive		(d)	None of these	
7.	At how many points between	the interval $(-\infty, \infty)$ is the func	tion f	$(x) = \sin x$ is not different	tiable.
	(a) 0	(b) 7	(c)	9	(d) 3

Max Marks : 40

Target Mathematics by- Dr.Agyat Gupta Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony visit us: agyatgupta.com;Ph. :7000636110(0) Mobile : 9425109601(P)

Mathematics SP-10 8. Which of the following functions from I to itself is a bijection? (a) $f(x) = x^3$ (b) f(x) = x + 2(c) f(x) = 2x + 1(d) $f(x) = x^2 + x$ Let A be a matrix of order 3 and let Δ denotes the value of determinant A. Then determinant (-2A) = 9. (a) -8Δ (b) -2Δ (c) 2Δ (d) 8Δ 10. On which of the following intervals is the function f given by $f(x) = x^{100} + \sin x - 1$ strictly decreasing? (b) $\left(\frac{\pi}{2},\pi\right)$ (a) (0,1)(c) $\left(0,\frac{\pi}{2}\right)$ (d) None of these 11. Let S be the set of all real numbers. Then, the relation $R = \{(a, b) : 1 + ab > 0\}$ on S is (a) Reflexive and symmetric but not transitive (b) Reflexive and transitive but not symmetric (d) Reflexive, transitive and symmetric (c) Symmetric, transitive but not reflexive 12. What is the x-coordinate of the point on the curve $f(x) = \sqrt{x} (7x - 6)$, where the tangent is parallel to x-axis? (c) $\frac{6}{7}$ (b) $\frac{2}{7}$ (a) $-\frac{1}{2}$ (d) $\frac{1}{2}$ 13. If $f(x) = \begin{cases} \frac{[x]-1}{x-1}, & x \neq 1 \\ 0, & x = 1 \end{cases}$ then f(x) is (a) continuous as well as differentiable at x = 1(b) differentiable but not continuous at x = 1(c) continuous but not differentiable at x = 1(d) neither continuous nor differentiable at x = 114. If area of triangle is 4 sq units with vertices (-2, 0), (0, 4) and (0, k), then k is equal to (a) 0, -8(c) -8(d) 0.8 (b) 8 15. The equation of one of the tangents to the curve $y = cos(x + y), -2\pi \le x \le 2\pi$ that is parallel to the line x + 2y = 0, is (a) x + 2y = 1(b) $x + 2y = \pi/2$ (d) None of these (c) $x + 2y = \pi/4$ 16. If x < 5, then (d) -x < -5(a) $-x, \leq -5$ (b) $-x_{1} \ge -5$ (c) -x > -517. Given that x, y and b are real numbers and x < y, b < 0, then (b) $\frac{x}{h} \leq \frac{y}{h}$ (a) $\frac{x}{h} < \frac{y}{h}$ (d) $\frac{x}{h} \ge \frac{y}{h}$ (c) $\frac{x}{h} > \frac{y}{h}$ 18. Area of the triangle whose vertices are (a, b+c), (b, c+a) and (c, a+b), is (a) 2 sq units (b) 3 sq units (c) 0 sq unit (d) None of these 19. Angle formed by the positive y-axis and the tangent to $y = x^2 + 4x - 17$ at $\left(\frac{5}{2}, \frac{-3}{4}\right)$ is (b) $\frac{\pi}{2} - \tan^{-1} 9$ (a) $\tan^{-1} 9$ (c) $\frac{\pi}{2} + \tan^{-1}9$ $\frac{\pi}{2}$ (d) bv

(M.Sc, B.Ed., M.Phill, P.hd)

Jhe Excellence Key...

(a) $\frac{1}{\sqrt{3}}$ (a) $\frac{1}{\sqrt{3}}$ (a) $\frac{1}{\sqrt{3}}$ (b) $\frac{1}{\sqrt{3}}$ (c) $\frac{1}{\sqrt$	r-2								
In this section, att In this section, att P1. The corner p $2x + y \le 10, x$ the maximum (a) $p = q$ (c) $p = 3q$ P2. Let $P = \{(x, y)$ (a) Reflexiv (c) Transiti P3. If the function $f(x) = x^3 - 3x$ I. $x = \pm 2a$ II. $x = 1$ is a III. local main (c) Only I and (c) Only I and (c) Only I, I P4. If $f(x) = \begin{cases} 2 \\ 4x \end{cases}$ (a) $f(x)$ is construction (c) $f(x)$ is done P5. If $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$ (a) congrue (c) triangle P6. If $f(x) = \frac{x}{\sin x}$	0 and A + B = $\pi/3$, then	the maximum value of	of tan A tar	n B is					
21. The corner p $2x + y \le 10, x$ the maximum (a) p = q (c) p = 3q 22. Let P = {(x, y) (a) Reflexiv (c) Transiti 23. If the function f(x) = x ³ - 3x I. x = ± 2 a II. x = 1 is a III. local min IV. local mai (a) Only I a (c) Only I, I 24. If $f(x) = \begin{cases} 4x \\ 4x \end{cases}$ (a) f(x) is c (c) f(x) is d 25. If $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$ (a) congrue (c) triangle 26. If $f(x) = \frac{x}{\sin x}$	(b)	$\frac{1}{3}$	(c)	3	(d) $\sqrt{3}$				
21. The corner p $2x + y \le 10, x$ the maximum (a) p = q (c) p = 3q 22. Let P = {(x, y) (a) Reflexiv (c) Transiti 23. If the function f(x) = x ³ - 3x I. x = ± 2 a II. x = 1 is a III. local min IV. local mai (a) Only I a (c) Only I, I 24. If $f(x) = \begin{cases} 4x \\ 4x \end{cases}$ (a) f(x) is c (c) f(x) is d 25. If $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$ (a) congrue (c) triangle 26. If $f(x) = \frac{x}{\sin x}$		SEC	TION-B						
2x + y ≤ 10, x the maximum (a) p = q (c) p = 3q 22. Let P = {(x, y) (a) Reflexiv (c) Transiti 23. If the function f(x) = x ³ - 3x I. x = ± 2 a II. x = 1 is a III. local min IV. local main (a) Only I a (c) Only I, I 24. If $f(x) = \begin{cases} 4x \\ 4x \end{cases}$ (a) $f(x)$ is c (c) $f(x)$ is d 25. If $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$ (a) congrue (c) triangle 26. If $f(x) = \frac{x}{\sin x}$	tempt any 16 question	ns out of the questions	s 21-40. E	ach question is of 1	mark weightage.				
(c) $p = 3q$ (c) $p = 3q$ 22. Let $P = \{(x, y) (a) Reflexiv (c) Transiti 23. If the function f(x) = x^3 - 3xI. x = \pm 2aII. x = 1 is aIII. local minIV. local man(a) Only I a(b) Only I, I24. If f(x) = \begin{cases} 4x (x) (x) (x) (x) (x) (x) (x) (x) (x) (x$	points of the feasible re x + 3y \leq 15, x, y \geq 0 are m of Z occurs at both (3	e(0,0), (5,0), (3,4) ar		•••	equalities: p, $q > 0$. Condition on p ar	nd q so that			
22. Let P = {(x, y) (a) Reflexiv (c) Transiti 23. If the function f(x) = x ³ - 3x I. x = ± 2 a II. x = 1 is a III. local mi IV. local ma (a) Only I a (c) Only I, I 24. If $f(x) = \begin{cases} 4x \\ 4x \end{cases}$ (a) $f(x)$ is c (c) triangle 26. If $f(x) = \frac{x}{\sin x}$ (a) both $f(x)$ (c) $f(x)$ is an			(b)	p = 2q					
(a) Reflexiv (b) Reflexiv (c) Transiti 17 the function f(x) = x ³ - 3x I. x = ± 2 a II. x = 1 is a III. local mi IV. local ma (a) Only I a (c) Only I, I 24. If $f(x) = \begin{cases} 4x \\ 4x \end{cases}$ (a) $f(x)$ is c (c) $f(x)$ is c (c) $f(x)$ is d 25. If $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$ (a) congrue (c) triangle 26. If $f(x) = \frac{x}{\sin x}$ (a) both $f(x)$ (c) $f(x)$ is an			(d)	q = 3p					
(c) Transiti (c) Transiti (y) $ x^2 + y^2 = 1, x, y \in \mathbb{R}$	}. Then, P is							
23. If the function $f(x) = x^3 - 3x$ I. $x = \pm 2a$ II. $x = 1$ is a III. local mining IV. local main (a) Only I arises (c) Only I, I arises (c) $f(x)$ is a for $f(x)$ and $f(x)$ an	ve		(b)	Symmetric					
f(x) = x ³ - 3x I. x = ± 2 a II. x = 1 is a III. local mi IV. local ma (a) Only I a (c) Only I, I 24. If $f(x) = \begin{cases} 4x \\ 4x \end{cases}$ (a) f(x) is c (c) f(x) is c (c) f(x) is d 25. If $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$ (a) congrue (c) triangle 26. If $f(x) = \frac{x}{\sin x}$ (a) both $f(x)$ (c) f(x) is an	ive		(d)	Anti-symmetric					
f(x) = x ³ - 3x I. x = ± 2 a II. x = 1 is a III. local mi IV. local ma (a) Only I a (c) Only I, I 24. If $f(x) = \begin{cases} 4x \\ 4x \end{cases}$ (a) f(x) is c (c) f(x) is c (c) f(x) is d 25. If $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$ (a) congrue (c) triangle 26. If $f(x) = \frac{x}{\sin x}$ (a) both $f(x)$ (c) f(x) is an	on f be given by								
II. $x = 1$ is a III. local mi IV. local ma (a) Only I a (c) Only I, I 24. If $f(x) = \begin{cases} 2\\4x\\4x\\(a) f(x) = \\ x_2 y_2 1\\x_3 y_3 1 \end{cases}$ (a) congrue (c) triangle 26. If $f(x) = \frac{x}{\sin x}$ (a) both $f(x)$ (c) $f(x)$ is an	x + 3, then								
III. local mi IV. local ma (a) Only I a (c) Only I, I 24. If $f(x) = \begin{cases} 2\\4x\\ 4x \end{cases}$ (a) $f(x)$ is c (c) $f(x)$ is c (c									
IV. local ma (a) Only I a (c) Only I, I 24. If $f(x) = \begin{cases} 4x \\ 4x \end{cases}$ (a) $f(x)$ is c (c) $f(x)$ is c (c) $f(x)$ is d 25. If $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$ (a) congrue (c) triangle 26. If $f(x) = \frac{x}{\sin x}$ (a) both $f(x)$ (c) $f(x)$ is an	a point of local minima	1.							
(a) Only I a (c) Only I, I (c) Only I, I (c) Only I, I (c) Only I, I (c) f(x) is c (c) f(x) is c (c) f(x) is c (c) f(x) is d (c) f(x) is d (c) triangle (c) triangle (c) f(x) is a (c) f(x) is a (c) f(x) is a	inimum value is 2.								
(c) Only I, I (c) Only I, I (a) $f(x) = \begin{cases} 2\\ 4x \end{cases}$ (a) $f(x)$ is c (c) $f(x)$ is c (c) $f(x)$ is d (c) $f(x) = \frac{x}{x_3 + y_3 + 1}$ (a) congrue (c) triangle (c) triangle (c) $f(x) = \frac{x}{\sin x}$ (a) both $f(x)$ (c) $f(x)$ is an	aximum value is 5.								
24. If $f(x) = \begin{cases} 2 \\ 4x \end{cases}$ (a) $f(x)$ is c (c) $f(x)$ is c (c) $f(x)$ is d 25. If $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$ (a) congrue (c) triangle 26. If $f(x) = \frac{x}{\sin x}$ (a) both $f(x)$ (c) $f(x)$ is an	and II are true		(b)	Only II and III are tr	rue				
(a) $f(x)$ is c (c) $f(x)$ is c (c) $f(x)$ is d (c) $f(x) = \frac{x_1}{x_2} \frac{y_1}{y_2} \frac{1}{y_3} \frac{1}{y_3$	II and III are true		(d)	Only II and IV are tr	rue				
(c) $f(x)$ is d (c) $f(x)$ is d (25. If $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$ (a) congrue (c) triangle (c) triangle (c) If $f(x) = \frac{x}{\sin x}$ (a) both $f(x)$ (c) $f(x)$ is an	$-x^{2}, \text{ when } x \le 0$ $5x - 4, \text{ when } 0 < x \le 1$ $x^{2} - 3x, \text{ when } 1 < x < 2$ $3x + 4, \text{ when } x \ge 2$, then							
25. If $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$ (a) congrue (c) triangle 26. If $f(x) = \frac{x}{\sin x}$ (a) both $f(x)$ (c) $f(x)$ is an	continuous at $x = 0$		(b)	$f(\mathbf{x})$ is continuous at	t x = 2				
(a) congrue (c) triangle 26. If $f(x) = \frac{x}{\sin x}$ (a) both $f(x)$ (c) $f(x)$ is an	discontinuous at $x = 1$		(d)	None of these					
(a) congrue (c) triangle 26. If $f(x) = \frac{x}{\sin x}$ (a) both $f(x)$ (c) $f(x)$ is an	$=\begin{vmatrix} a_1 & b_1 & 1 \\ a_2 & b_2 & 1 \\ a_2 & b_2 & 1 \end{vmatrix}$ then two tr	iangles with vertices	(x ₁ , y ₁), ($(x_2, y_2), (x_3, y_3)$ and	$(a_1, b_1); (a_2, b_2); (a_3, b_3) a_1$	re			
(c) triangle 26. If $f(x) = \frac{x}{\sin x}$ (a) both $f(x)$ (c) $f(x)$ is an			<i>a</i> >	similar					
26. If $f(x) = \frac{x}{\sin x}$ (a) both $f(x)$ (c) $f(x)$ is an			(b) (d)	none of these					
(a) both $f(x)$ (c) $f(x)$ is an	-	where $0 < x \le 1$, ther							
(c) $f(x)$ is an									
	x) and $g(x)$ are increasing	ng functions			e decreasing functions				
	in increasing function		(d)	g(x) is an increasing	g tunction				
27. For all real va	alues of x, the minimum	value of $\frac{1-x+x^2}{1+x+x^2}$ is							
(a) 0	(b)	1	(c)	3	(d) $\frac{1}{3}$				

TA

(M.Sc, B.Ed., M.Phill, P.hd)

Jhe Excellence Key...

SP-	12					Mathematics
		2	3 _1			
28.	Find the cofactor of the elem	hent a_{32} of the determinant $\begin{vmatrix} 2\\3\\1 \end{vmatrix}$	5 <u>4</u> 6 5 8 9			
	(a) –2	(b) -4	(c)	-6	(d)	-9
29.	If $y = \log (\log x)$, then the va	alue of $e^y \frac{dy}{dx}$ is :				
	(a) e ^y	(b) $\frac{1}{x}$	(c)	$\frac{1}{(\log x)}$	(d)	$\frac{1}{(x \log x)}$
30.	For real numbers x and y, we	write x R y \Leftrightarrow x - y + $\sqrt{2}$ is	an irratio	nal number. Then, the re	elatior	n R is
	(a) Reflexive	(b) Symmetric	(c)	Transitive	(d)	None of these
31.	If $\Delta = \begin{vmatrix} 1^2 & 2^2 & 3^2 \\ 2^2 & 3^2 & 4^2 \\ 3^2 & 4^2 & 5^2 \end{vmatrix}$, the m	inor of a ₂₂ is				
	(a)46	(b) 46	(c)	-56	(d)	56
32.	The maximum value of $[x(x - x)]$	$(-1)+1]\frac{1}{3}, 0 \le x \le 1$ is				
	(a) $\left(\frac{1}{3}\right)^{\frac{1}{3}}$	(b) $\frac{1}{2}$	(c)	1	(d)	0
33.	The maximum area of rectan	gle inscribed in a circle of diar	meter R is			
	(a) R ²	(b) $\frac{R^2}{2}$	(c)	$\frac{R^2}{4}$	(d)	$\frac{R^2}{8}$
34.	The curve $y = x^{\frac{1}{5}}$ at (0, 0) h	nas				
	(a) a vertical tangent (para		(b)	a horizontal tangent (pa	arallel	to x-axis)
25	(c) no oblique tangent	and A is a series matrix that		no tangent		
35.	(a) det (A^{-1})	and A is a square matrix, ther		det (B^{-1})		
	(c) det (A)			det (B)		
36.	-	he curve $3x^2 - y^2 = 8$ which is	_			
	(a) $3x - y = 8$ (c) $x + 3y \pm 8 = 0$			3x + y + 8 = 0 $x + 3y = 0$		
37.	$\frac{\mathrm{d}}{\mathrm{dx}} \left[\log \left\{ \mathrm{e}^{\mathrm{x}} \left(\frac{\mathrm{x} - 2}{\mathrm{x} + 2} \right) \right\}^{3/4} \right] \mathrm{i}$	is equal to	(-)			
	(a) 1		(b)	$\frac{x^2+1}{x^2-4}$		
	(c) $\frac{x^2 - 1}{x^2 - 4}$		(d)	$e^x \frac{x^2 - 1}{x^2 - 4}$		
I	ARGET MAT	THEMATIC	S by	Dr. AGYA		GUPTA 🔏
	5	The Excellence Key		(M.Sc, B.I	Ed., I	M.Phill, P.hd)

Sa	mple Paper-2			SP-13						
38.	If the curve $ay + x^2 = 7$ and	$dx^3 = y$, cut orthogona	ally at $(1, 1)$, then the value of a is							
	(a) 1	(b) 0	(c) -6 (d) 6							
39.	If $A = \begin{bmatrix} \alpha & \beta \\ \gamma & \alpha \end{bmatrix}$, then Adj.	A is equal to :								
	(a) $\begin{bmatrix} \delta & -\gamma \\ -\beta & \alpha \end{bmatrix}$		(b) $\begin{bmatrix} \delta & -\beta \\ -\gamma & \alpha \end{bmatrix}$							
	(c) $\begin{bmatrix} -\delta & \beta \\ \gamma & -\alpha \end{bmatrix}$		(d) $\begin{bmatrix} -\delta & -\beta \\ \gamma & \alpha \end{bmatrix}$							
40.	The equation of tangent to	the curve $y(1+x^2) =$	= 2 - x, where it crosses X-axis is							
	(a) $x+5y=2$		(b) $x - 5y = 2$							
	(c) $5x-y=2$		(d) $5x+y=2$							
	SECTION-C									

In this section, attempt **any 8** questions. Each question is of 1 mark weightage. Questions 46-50 are based on a case-study.

41. If $A = [a_{ij}]_{3 \times 4}$ is matrix given by $\mathbf{A} = \begin{bmatrix} 4 & -2 & 1 & 3\\ 5 & 7 & 9 & 6\\ 21 & 15 & 18 & -25 \end{bmatrix}$ Then, $a_{23} + a_{24}$ will be equal to the element (b) a₄₄ (a) a₁₄ (c) a₁₃ (d) a₃₂ 42. If $A = [a_{ij}]$ is a matrix of order 4×5 , then the diagonal elements of A are (a) $a_{11}, a_{22}, a_{33}, a_{44}$ (b) $a_{55}, a_{44}, a_{33}, a_{22}, a_{11}$ (c) a_{11}, a_{22}, a_{33} (d) do not exist **43.** For any 2×2 matrix A, if A (adj. A) = $\begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$, then | A | is equal to : (a) 0 (c) 20 (d) 100 (b) 10 **44.** If $A = \begin{bmatrix} 4 & -5 & -2 \\ 5 & -4 & 2 \\ 2 & 2 & 8 \end{bmatrix}$, then adj. (A) equals: (b) $\begin{bmatrix} -36 & 36 & -18 \\ -36 & 36 & -18 \\ 18 & -18 & 9 \end{bmatrix}$ (a) $\begin{bmatrix} 36 & -36 & 18 \\ 36 & 36 & -18 \\ 18 & -18 & 9 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ (d) None of these

MA

HEM/A

Jhe Excellence Key...

(M.Sc, B.Ed., M.Phill, P.hd)

sp.14

45. $f(x) = \frac{1}{1 + \tan x}$

- (a) is a continuous, real-valued function for all $x \in (-\infty, \infty)$
- (b) is discontinuous only at $x = \frac{3\pi}{4}$
- (c) has only finitely many discontinuities on $(-\infty, \infty)$
- (d) has infinitely many discontinuities on $(-\infty,\infty)$

Case Study

On a Diwali day Niharika Singh went to bazaar to purchase fireworks at the rates given as: 10 hangers at ₹ 3 each, 8 fountains at ₹ 2 each, 6 atom bombs at ₹ 12 and 18 rockets at ₹ 8 each.

Based on the above information answer the following questions.

46. Representation of the prices in column matrix is

(a)	[3 2 12 8]	(b)	[3 2 8 12]
(c)	$\begin{bmatrix} 3\\2\\8\\12\end{bmatrix}$	(d)	$\begin{bmatrix} 3\\2\\12\\8 \end{bmatrix}$

47. Find the individual total cost of each item

	(a) [30 16 72 144]	(b)	[3 2 12 8]
	(c) [10 8 6 18]	(d)	[30 16 144 72]
48.	Find how much Niharika Singh paid for the fireworks.		
	(a) ₹262	(b)	₹42
	(c) ₹25	(d)	₹1050
49.	If each price hike by 2%, then how much Niharika Sing	h paid for tl	he fireworks.
	(a) ₹264	(b)	₹267
	(c) ₹1052	(d)	₹1071
50.	If Niharika purchase only 10 rockets, then how much sl	he paid for	the fireworks.
	(a) ₹850	(b)	₹ 198
	(c) ₹34	(d)	₹25

Target Mathematics by- Dr.Agyat Gupta <u>Resi</u>.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony visit us: agyatgupta.com;Ph. :7000636110(O) Mobile : <u>9425109601(P)</u>

Mathematics

Sample Paper

	ANSWER KEYS																		
1	(b)	6	(b)	11	(a)	16	(c)	21	(d)	26	(c)	31	(c)	36	(c)	41	(d)	46	(d)
2	(a)	7	(a)	12	(b)	17	(c)	22	(b)	27	(d)	32	(c)	37	(c)	42	(b)	47	(a)
3	(b)	8	(b)	13	(d)	18	(c)	23	(d)	28	(a)	33	(c)	38	(d)	43	(b)	48	(a)
4	(d)	9	(a)	14	(d)	19	(b)	24	(b)	29	(b)	34	(b)	39	(b)	44	(b)	49	(b)
5	(a)	10	(d)	15	(b)	20	(b)	25	(c)	30	(a)	35	(c)	40	(a)	45	(d)	50	(b)

- (b) Given relation is R={(1, 1), (2, 2), (3, 3)} on the set {1, 2, 3}. This relation is not symmetric, not transitive. only reflexive. (∵ a R a, b R b, c R c).
- 2. (a) 3. (b) 4. (d)
- 5. (a) $-3x < -13 17 \Rightarrow -3x < -30 \Rightarrow x > 10$ $\Rightarrow x \in (10, \infty).$
- 6. (b) Given $\alpha R \beta \Leftrightarrow \alpha \perp \beta \therefore \alpha \perp \beta \Leftrightarrow \beta \perp \alpha \Rightarrow \beta R \alpha$ Hence, R is symmetric.
- 7. (a) The function $f(x) = \sin x$ is differentiable for all $x \in R$. Therefore the number of points in the interval $(-\infty, \infty)$ where the function is not differentiable are zero.
- 8. (b)

9. (a) $|-2A| = (-2)^3 |A| = -8 \Delta$

- 10. (d)
- **11.** (a) Reflexive: As 1 + a. $a = 1 + a^2 > 0$, $a \in S$

 \therefore (a,a) \in R \therefore R is reflexive.

Symmetric: $(a, b) \in R \implies 1 + ab > 0$

 $\Rightarrow 1 + ba > 0 \Rightarrow (b, a) \in \mathbb{R}$, $\therefore \mathbb{R}$ is symmetric.

Transitive: $(a,b) \in R$ and $(b,c) \in R$ need not imply

 $(a,c) \in \mathbb{R}$. Hence, R is not transitive.

- 12. (b) 13. (d) 14. (d)
- **15.** (b) $y = \cos(x + y)$...(i)

Jhe Excellence Key...

 $\therefore \quad \frac{\mathrm{d}y}{\mathrm{d}x} = -\sin(x+y) \bigg\{ 1 + \frac{\mathrm{d}y}{\mathrm{d}x} \bigg\}$

- $\therefore \quad \frac{dy}{dx} = -\frac{\sin(x+y)}{1+\sin(x+y)} = -\frac{1}{2}$
- $\Rightarrow \sin(x+y) = 1$, so $\cos(x+y) = 0$

$$\therefore$$
 from (i), y=0 and (x + y) = $2n\pi + \frac{\pi}{2}$

Tangent at
$$\left(\frac{\pi}{2}, 0\right)$$
 is $x + 2y = \frac{\pi}{2}$

16. (c) As x < 5, So -x > -5

If an inequality is multiplied by a negative number, then the sign of inequality get reversed.

17. (c)
$$x < y \Rightarrow \frac{x}{b} > \frac{y}{b}$$
 (b<0)

18. (c) 19. (b) 20. (b)

21. (d) Maximum value of Z = px + qy occurs at (3, 4) and (0, 5),
At (3, 4), Z = px + qy = 3p + 4q

At (0, 5), $Z = 0 + q \cdot 5 = 5q$

Both are the maximum values

$$\Rightarrow$$
 3p + 4q = 5q or q = 3p

- 22. (b) The relation is not reflexive and transitive but it is symmetric, because $x^2 + y^2 = 1 \Rightarrow y^2 + x^2 = 1$
- 23. (d) 24. (b) 25. (c)

26. (c) We have
$$f(x) = \frac{x}{\sin x}, \ 0 < x \le 1$$

$$\therefore f'(x) = \frac{\sin x - x \cos x}{\sin^2 x} = \frac{\cos x (\tan x - x)}{\sin^2 x}$$

(M.Sc, B.Ed., M.Phill, P.hd)

Solutions

- We know that $\tan x > x$ for $0 < x < \pi/2$
- or f'(x) > 0 for $0 < x < \le 1$

Hence, f(x) is an increasing function. $g(x) = \frac{x}{\tan x}$

$$\therefore g'(x) = \frac{\tan x - x \sec^2 x}{\tan^2 x} = \frac{\sin x \cos x - x}{\sin^2 x}$$

$$=\frac{\sin 2x - 2x}{2\sin^2 x} = \frac{\sin \theta - \theta}{2\sin^2(\theta/2)}, \text{ where } \theta \in (0, 2).$$

We know that $\sin \theta < \theta \forall \theta > 0$.

Thus, g'(x) < 0, i.e., g(x) is a decreasing function.

- 27. (d) 28. (a) 29. (b)
- 30. (a) Reflexive: For any $x \in R$, we have $x x + \sqrt{2} = \sqrt{2}$ and irrational number. \Rightarrow x R x for all x. So, R is reflexive.

Symmetric: R is not symmetric, because $\sqrt{2}$ R 1 but $1 \mathbb{K} \sqrt{2}$,

Transitive: R is not transitive also because $\sqrt{2}$ R 1 and $1 \text{ R} 2 \sqrt{2}$ but $\sqrt{2} \mathbb{K} 2 \sqrt{2}$.

31. (c)

32. (c) Let
$$y = [x(x-1) + 1]^{1/3}$$

 $\therefore \frac{dy}{dx} = \frac{(2x-1)}{3[x(x-1) + 1]^{2/3}}, \frac{dy}{dx} = 0 \text{ at } x = \frac{1}{2}$
 $\frac{dy}{dx}$ Changes sign from -ve to + ve at $x = \frac{1}{2}$
 \therefore y is minimum at $x = \frac{1}{2}$
Value of y at $x = 0, (0+1)^{1/3} = 1^{1/3} = 1$
Value of y at $x = 1, (0+1)^{1/3} = 1^{1/3} = 1$
 \therefore The maximum value of y is 1.
33. (c)
34. (b) Given $y = x^{\frac{1}{5}}$
 $\Rightarrow \frac{dy}{dx} = \frac{1}{5}x^{-4/5} \Rightarrow \frac{dy}{dx} \text{ at } (0,0) = \frac{1}{5}(0) \Rightarrow \frac{dy}{dx} = 0$
35. (c) det(B⁻¹AB) = det(B⁻¹) det A det B
 $= det(B^{-1}). det B. det A = det(B^{-1}B). det A$
 $= det(I). det A = 1. det A = det A.$

s-5

36.	(c)	37.	(c)	38.	(d)	39.	(b)	40. (a)
41.	(d)	42.	(b)	43.	(b)	44.	(b)	45. (d)
46.	(d)	47.	(a)	48.	(a)	49.	(b)	50. (b)
