

Sample Paper

AG-TMC-TS-TFRM-1-003

Time: 90 Minutes Max Marks: 40

General Instructions

- 1. This question paper contains three sections – A, B and C. Each part is compulsory.
- 2. Section-A has 20 MCQs, attempt any 16 out of 20.
- 3. Section-B has 20 MCQs, attempt any 16 out of 20.
- Section-C has 10 MCQs, attempt any 8 out of 10. 4.
- 5. All questions carry equal marks.
- 6. There is no negative marking.

SECTION-A

In this section, attempt any 16 questions out of questions 1-20. Each question is of 1 mark weightage.

- If A is a non-singular matrix of order 3, then $|adj A| = |A|^n$. Here the value of n is 1.

(b) 4

(c) 6

(d) 8

- The principal value of $\sin^{-1}\left(\sin\frac{5\pi}{3}\right)$ is
 - (a) $-\frac{5\pi}{3}$

- (c) $-\frac{\pi}{3}$

- If x is real number and |x| < 3, then
 - (a) $x \ge 3$
- (b) -3 < x < 3
- (c) $x \le -3$
- (d) $-3 \le x \le 3$

- If $y = e^{x^x}$, then $\frac{dy}{dx} =$
 - (a) $y(1 + \log_e x)$
- (b) $yx^{x}(1 + \log_{e} x)$
- (c) $ye^{x}(1+\log_{e} x)$
- (d) None of these

- If x is real, then the minimum value of $x^2 8x + 17$ is
- (b) 0

(c) 1

(d) 2

- If $\sin^{-1} x = y$, then
 - (a) $0 \le y \le \pi$
- (b) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
- (c) $0 < y < \pi$ (d) $-\frac{\pi}{2} < y < \frac{\pi}{2}$
- x and b are real numbers. If b > 0 and |x| > b, then
 - (a) $x \in (-b, \infty)$
- (b) $x \in (-\infty, b)$
- (c) $x \in (-b, b)$
- (d) $x \in (-\infty, -b) \cup (b, \infty)$
- Given: 2x-y-4z=2, x-2y-z=-4, $x+y+\lambda z=4$, then the value of λ such that the given system of equation has no solution, 8.

(b) 1

(c) 0

(d) -3

- The function $f(x) = \tan x x$
 - (a) always increases

(b) always decreases

(c) never increases

(d) sometimes increases and sometimes decreases

10. If $y^x = e^{y-x}$, then $\frac{dy}{dx}$ is equal to

(a)
$$\frac{1 + \log y}{y \log y}$$

(b)
$$\frac{\left(1 + \log y\right)^2}{y \log y}$$

(c)
$$\frac{1 + \log y}{(\log y)^2}$$

(d)
$$\frac{\left(1 + \log y\right)^2}{\log y}$$

11. $\tan^{-1}\sqrt{3} - \sec^{-1}(-2)$ is equal to

(b)
$$-\frac{\pi}{3}$$

(c)
$$\frac{\pi}{3}$$

(d)
$$\frac{2\pi}{3}$$

12. Which of the following function is decreasing on $\left(0, \frac{\pi}{2}\right)$?

- (a) sin 2x
- (b) tan x

- (c) cos x
- (d) cos 3x

13. L.P.P is a process of finding

- (a) Maximum value of objective function
- (b) Minimum value of objective function
- (c) Optimum value of objective function
- (d) None of these

14. If A be a square matrix of order 3×3 , then |kA| is equal to

(a)
$$k \mid A$$

(b)
$$k^2 |A|$$

(c)
$$k^3 |A|$$

(d) 3k |A|

15. The function $f(x) = 4 \sin^3 x - 6 \sin^2 x + 12 \sin x + 100$ is strictly

(a) increasing in
$$\left(\pi, \frac{3\pi}{2}\right)$$

(b) decreasing in
$$\left(\frac{\pi}{2}, \pi\right)$$

(c) decreasing in
$$\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$

(d) decreasing in
$$\left[0, \frac{\pi}{2}\right]$$

16. Which of the following is the principal value branch of $\csc^{-1}x$?

(a)
$$\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$$

(b)
$$(0,\pi)-\left\lceil\frac{\pi}{2}\right\rceil$$

(c)
$$\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$

(d)
$$\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] - \{0\}$$

17. L.P.P. has constraints of

(a) one variables

(b) two variables

(c) one or two variables

(d) two or more variables

18. Which of the following is correct:

- (a) Determinant is a square matrix
- (b) Determinant is a number associated to a matrix
- (c) Determinant is a number associated to a square matrix
- (d) None of these

Dr. AGYAT GUPTA MOB: 9425109601

Sample Paper-3

SP-19

19. If $y = x (x - 3)^2$ decreases for the values of x given by

(a)
$$1 < x < 3$$

(b)
$$x < 0$$

(c)
$$x > 0$$

(d)
$$0 < x < \frac{3}{2}$$

20. If x = f(t) and y = g(t), then $\frac{d^2y}{dx^2}$ is equal to

(a)
$$\frac{g''(t)}{f''(t)}$$

(b)
$$\frac{g''(t)f'(t)-g'(t)f''(t)}{(f'(t))^3}$$

(c)
$$\frac{g''(t)f'(t)-g'(t)f''(t)}{(f'(t))^2}$$

(d) None of these

SECTION-B

In this section, attempt any 16 questions out of the questions 21-40. Each question is of 1 mark weightage.

21. Corner points of feasible region of inequalities gives

- (a) optional solution of L.P.P.
- (c) constraints.
- **22.** If $f: R \to R$ be defined by $f(x) = 2x + \cos x$, then f
 - (a) has a minimum at $x = \pi$
 - (c) is a decreasing function

- (b) objective function
- (d) linear assumption
- (b) has a maximum at x = 0
- (d) is an increasing function

23.
$$\sin \left[\frac{\pi}{3} - \sin^{-1} \left(-\frac{1}{2} \right) \right]$$
 is equal to

- (a) $\frac{1}{2}$
- (b) $\frac{1}{3}$

(c) $\frac{1}{4}$

(d) 1

24. If area of triangle is 35 sq. units with vertices (2, -6), (5, 4) and (k, 4). Then k is

(a) 12

(b) -2

- (c) -12, -2
- (d) 12, -2

25. If $y = \frac{f(x)}{\phi(x)}$ and $z = \frac{f'(x)}{\phi'(x)}$, then $\frac{f''}{f} - \frac{\phi''}{\phi} + \frac{2(y-z)}{f\phi}(\phi')^2 =$

(a) $\frac{d^2y}{dx^2}$

(b) $\frac{1}{v} \frac{d^2 y}{dx^2}$

(c) $y \frac{d^2 y}{dx^2}$

(d) None of these.

26. If $x^2 + y^2 = 1$, then

(a) $yy'' - (2y')^2 + 1 = 0$

(b) $yy'' - (y')^2 + 1 = 0$

(c) $yy'' - (y')^2 - 1 = 0$

(d) $yy'' - 2(y')^2 + 1 = 0$

27. The domain of the function $\cos^{-1}(2x-1)$ is

(a) [0,1]

(b) [-1, 1]

(c) (-1, 1)

(d) $[0, \pi]$

SP-20 **Mathematics**

- **28.** The interval on which the function $f(x) = 2x^3 + 9x^2 + 12x 1$ is decreasing, is
 - (a) $\left[-1,\infty\right)$

(b) [-2, -1]

(c) $\left(-\infty, -2\right]$

(d) [-1, 1]

- **29.** $\tan^{-1} \sqrt{3} \cot^{-1} (-\sqrt{3})$ is equal to
 - (a) π

(b) $-\frac{\pi}{2}$

(c) 0

- (d) $2\sqrt{3}$
- **30.** If $\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ and A_{ij} is the cofactors of a_{ij} , then value of Δ is given by
 - (a) $a_{11}A_{31} + a_{12}A_{32} + a_{13}A_{33}$

(b) $a_{11}A_{11} + a_{12}A_{21} + a_{13}A_{31}$

- (d) $a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31}$
- (c) $a_{21}A_{11} + a_{22}A_{12} + a_{23}A_{13}$ (d) $a_{11}A_{11} + a_{22}A_{12}$ 31. The two curves $x^3 3xy^2 + 2 = 0$ and $3x^2y y^3 2 = 0$ intersect at an angle of

(b) $\frac{\pi}{3}$

- 32. If f(x) = 2x and $g(x) = \frac{x^2}{2} + 1$, then which of the following can be a discontinuous function?
 - (a) f(x) + g(x)
- (b) f(x)-g(x)
- (c) f(x).g(x)
- (d) $\frac{g(x)}{f(x)}$
- 33. The slope of tangent to the curve $x = t^2 + 3t 8$, $y = 2t^2 2t 5$ at the point (2, -1) is

- (d) -6

- **34.** Which of the following is the principal value branch of $\cos^{-1}x$?
 - (a) $\left| \frac{-\pi}{2}, \frac{\pi}{2} \right|$

(b) $(0, \pi)$

(c) $[0, \pi]$

- (d) $(0, \pi) \left\{ \frac{\pi}{2} \right\}$
- 35. Let A be a non-singular square matrix of order 3×3 . Then Adj A is equal to:
 - (a) |A|

- $|\mathbf{A}|^3$
- (d) 3|A|

- The tangent to the curve $y = e^{2x}$ at the point (0, 1) meets X-axis at
 - (a) (0, 1)

(b) $\left(-\frac{1}{2},0\right)$

(c) (2,0)

- (d) (0,2)
- **37.** Which of these terms is not used in a linear programming problem?
 - (a) Slack variables

(b) Objective function

(c) Concave region

(d) Feasible solution

Dr. AGYAT GUPTA MOB: 9425109601

Sample Paper-3

38. The domain of the function defined by $f(x) = \sin^{-1} \sqrt{x-1}$ is

(a) [1,2]

(b) [-1, 1]

(c) [0,1]

(d) None of these

39. The points at which the tangent to the curve $y = x^3 - 12x + 18$ are parallel to X-axis are

(a) (2,-2), (-2,-34)

(b) (2,34),(-2,0)

(c) (0,34),(-2,0)

(d) (2,2), (-2,34)

40. The optimal value of the objective function is attained at the points

- (a) Given by intersection of inequations with axes only
- (b) Given by intersection of inequations with x- axis only
- (c) Given by corner points of the feasible region
- (d) None of these

SECTION-C

In this section, attempt any 8 questions. Each question is of 1 mark weightage. Questions 46-50 are based on a case-study.

41. If
$$A = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$, then value of α for which $A^2 = B$, is

(a) 1

(b) -

(c) 4

(d) no real values

42. If
$$A = \begin{bmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{bmatrix}$$
, then AA^{T} is

- (a) Zero matrix
- (b) I₂

- (c) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
- (d) None of these

43. The order of the single matrix obtained from
$$\begin{bmatrix} 1 & -1 \\ 0 & 2 \\ 2 & 3 \end{bmatrix} \left\{ \begin{bmatrix} -1 & 0 & 2 \\ 2 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 1 & 23 \\ 1 & 0 & 21 \end{bmatrix} \right\}$$
 is

- (a) 2×3
- (b) 2×2

- (c) 3×2
- (d) 3×3

44. If
$$A = \begin{bmatrix} 0 & 2 & -3 \\ -2 & 0 & -1 \\ 3 & 1 & 0 \end{bmatrix}$$
, then A is a

(a) symmetric matrix

(b) skew-symmetric matrix

(c) diagonal matrix

(d) none of these

45. If
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
, then A^{16} is equal to:

(a) $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

(b) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

(c) $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$

(d) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Target Mathematics by- Dr. Agyat Gupta

Resi.: D-79 Vasant Vihar; Office: 89-Laxmi bai colony visit us: agyatgupta.com; Ph.: 7000636110(O) Mobile: 9425109601(P)

SP-22 **Mathematics**

Case Study

The total cost of producing x T.V. sets per day is $\xi(x^2 - 5x + 4)$ and the price per set at which they may be sold is $\xi(2x - 5)$. Based on the above information answer the following.

- **46.** The profit function is
 - (a) 48x+4
 - (c) $x^2-3x+54$

- (b) x^2-4
- (d) $-x^2 + 7x 9$

one-many

many-many

- **47.** The profit function is
 - (a) one-one

 - (c) many-one
- **48.** If 20 units T.V. produced in one day then profit is
 - (a) ₹400
 - (c) ₹396

- ₹35 (b)
- (d) None of these
- 49. The number of T.V. produced in a day such that profit is zero are
 - (a) 2 units

± 2 units

(c) 5 units

- (d) ± 5 units
- The minimum number of T.V. produced in a day to make loss are
 - (a) 2 units

(b) 1 unit

(c) 5 units

(d) 10 units
