Target Mathematics by Dr. Agyat Gupta

Sample Paper

AG-TMC-TS-TERM-1- 001

Time: 90 Minutes Max Marks: 40

General Instructions

- 1. This question paper contains three sections – A, B and C. Each part is compulsory.
- 2. Section-A has 20 MCQs, attempt any 16 out of 20.
- 3. Section-B has 20 MCQs, attempt any 16 out of 20.
- 4. Section-C has 10 MCQs, attempt any 8 out of 10.
- 5. All questions carry equal marks.
- 6. There is no negative marking.

SECTION-A

In this section, attempt any 16 questions out of questions 1-20. Each question is of 1 mark weightage.

- Principal value of $\operatorname{cosec}^{-1}\left(\frac{-2}{\sqrt{3}}\right)$ is equal to 1.
 - (a) $-\frac{\pi}{3}$
- (b) $\frac{\pi}{3}$

- (c) $\frac{\pi}{2}$
- (d) $-\frac{\pi}{2}$

- The function $f(x) = \tan x 4x$ is strictly decreasing on
 - (a) $\left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$ (b) $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$
- (c) $\left(-\frac{\pi}{3}, \frac{\pi}{2}\right)$ (d) $\left(\frac{\pi}{2}, \pi\right)$
- If the matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ and $C = [c_{ij}]$ are of the same order, say $m \times n$, satisfy Associative law, then
 - (a) (A+B)+C=A+(B+C)

(b) A + B = B + C

(c) A + C = B + C

- (d) A + B + C = A B C
- If $A = \begin{bmatrix} 3 & 5 \\ 2 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 17 \\ 0 & -10 \end{bmatrix}$, then |AB| is equal to:
 - (a) 80

(b) 100

- (c) -110
- (d) 92

- Prinicpal value of $\tan^{-1}(\sqrt{3})$ is equal to

- (c) $\frac{2\pi}{3}$

- The angle of intersection of the curve $y^2 = x$ and $x^2 = y$ is
 - (a) $\tan^{-1}\left(\frac{3}{2}\right)$ (b) $\tan^{-1}\left(\frac{3}{4}\right)$ (c) $\tan^{-1}\left(\frac{1}{2}\right)$ (d) $\tan^{-1}\left(\frac{1}{5}\right)$

- 7. Choose the incorrect statement.
 - (a) A matrix A = [3] is a scalar matrix of order 1
 - (b) A matrix B = $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ is a scalar matrix of order 2
 - (c) A matrix C = $\begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & \sqrt{3} & 0 \\ 0 & 0 & \sqrt{3} \end{bmatrix}$ of order 3 is not a scalar matrix
 - (d) None of the above
- If A_{ij} denotes the cofactor of the element a_{ij} of the determinant $\begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{vmatrix}$, then value of $a_{11}A_{31} + a_{13}A_{32} + a_{13}A_{33}$ is

 (a) 0 (b) 5 (c) 10 (d) -5
- 9. If $f(x) = \begin{cases} \frac{1 \sqrt{2} \sin x}{\pi 4x}, & \text{if } x \neq \frac{\pi}{4} \\ a, & \text{if } x = \frac{\pi}{4} \end{cases}$ is continuous at $\frac{\pi}{4}$, then a is equal to
 - (a) 4

(c) 1

(d)

- **10.** The constraints $-x_1 + x_2 \le 1$, $-x_1 + 3x_2 \le 9$, $x_1, x_2 \ge 0$ define on
 - (a) Bounded feasible space

- (b) Unbounded feasible space
- (c) Both bounded and unbounded feasible space
- (d) None of these

- 11. $f(x) = \left(\frac{e^{2x} 1}{e^{2x} + 1}\right)$ is
 - (a) an increasing function

(b) a decreasing function

(c) an even function

- (d) None of these
- 12. If each of third order determinant of value Δ is multiplied by 4, then value of the new determinant is:

- (c) 64\Delta
- (d) 128Δ

13. Let $f(x) = \begin{cases} \frac{x^3 + x^2 - 16x + 20}{(x - 2)^2}, & x \neq 2 \\ k, & x = 2 \end{cases}$

If f(x) is continuous for all x, then k =

(a) 3

(c) 7

(d) 9

- **14.** Which of the following is correct statement?
 - (a) Diagonal matrix is also a scalar matrix
- Identity matrix is a particular case of scalar matrix
- (c) Scalar matrix is not a diagonal matrix
- Null matrix cannot be a square matrix
- 15. If c_{ij} is the cofactor of the element a_{ij} of the determinant $\begin{vmatrix} 2 & -3 & 3 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{vmatrix}$, then write the value of $a_{32}.c_{32}$ (a) 110 (b) 22 (c) -110 (d) -22

Target Mathematics by- <u>Dr.</u>Agyat Gupta

Resi.: D-79 Vasant Vihar; Office: 89-Laxmi bai colony visit us: agyatgupta.com;Ph. :7000636110(O) Mobile : 9425109601(P)

Dr. Agyat Gupta MOB: 9425109601

Sample Paper-1

SP-3

16. The two curves $x^3 - 3xy^2 + 2 = 0$ and $3x^2y - y^3 - 2 = 0$ intersect at an angle of

(a) $\frac{\pi}{4}$

- (b) $\frac{\pi}{3}$
- (c) $\frac{\pi}{2}$
- (d) $\frac{\pi}{6}$

17. In the interval [7, 9] the function f(x) = [x] is discontinuous at _____, where [x] denotes the greatest integer function

(a) 2

(b) 4

(c) 6

(d) 8

18. A vertex of bounded region of inequalities $x \ge 0$, $x + 2y \ge 0$ and $2x + y \le 4$ is

- (a) (1,1)
- (b) (0, 1)
- (c) (3,0)
- (d) (0, 1)

19. If the area of a triangle ABC, with vertices A(1, 3), B(0, 0) and C(k, 0) is 3 sq. units, then the value of k is

(a) 2

(b) 3

(c) 4

(d) 5

20. The range of the function $f(x) = 2\sqrt{x-2} + \sqrt{4-x}$ is

(a) $\left(\sqrt{2}, \sqrt{11}\right)$

(b) $[\sqrt{2}, -\sqrt{10}]$

(c) $\left(\sqrt{3}, \sqrt{10}\right)$

(d) $\left[\sqrt{2}, \sqrt{10}\right]$

SECTION-B

In this section, attempt **any 16** questions out of the questions 21-40. Each question is of 1 mark weightage.

21. The line y = x + 1 is a tangent to the curve $y^2 = 4x$ at the point

- (a) (1,2)
- (b) (2, 1)

- (c) (1,-2)
- (d) (-1,2)

22. Principal value of $\sec^{-1}(2)$ is equal to

(a) $\frac{\pi}{6}$

(b) $\frac{\pi}{3}$

- (c) $\frac{2\pi}{3}$
- (d) $\frac{5\pi}{3}$

23. The slope of the normal to the curve $y = 2x^2 + 3 \sin x$ at x = 0 is

(a) 3

(b) $\frac{1}{3}$

- (c) -3
- (d) $-\frac{1}{3}$

24. If $A = [a_{ij}]$ is a matrix of order 4×5 , then the diagonal elements of A are

(a) a₁₁, a₂₂, a₃₃, a₄₄

(b) a₅₅, a₄₄, a₃₃, a₂₂, a₁₁

(c) a_{11} , a_{22} , a_{33}

(d) do not exist

25. $-\frac{2\pi}{5}$ is the principal value of

(a) $\cos^{-1}\left(\cos\frac{7\pi}{5}\right)$

(b) $\sin^{-1} \left(\sin \frac{7\pi}{5} \right)$

(c) $\sec^{-1}\left(\sec\frac{7\pi}{5}\right)$

(d) None of these

26. The maximum value of $\frac{\ln x}{x}$ in $(2, \infty)$ is

(a) 1

(b) e

The Excellence Key...

(c) 2/e

(d) 1/e

Sp.4 Mathematics

- **27.** If $\Delta = \begin{vmatrix} 5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{vmatrix}$, the minor of the element a_{23} is
 - (a) 5

(b) 6

(c) 7

(d) 8

- **28.** The inequalities $5x + 4y \ge 20$, $x \le 6$, $y \le 4$ form
 - (a) A square

(b) A rhombus

(c) A triangle

- (d) A quadrilateral
- **29.** If p, q, r are 3 real numbers satisfying the matrix equation, $\begin{bmatrix} p & q & r \end{bmatrix} \begin{bmatrix} 3 & 4 & 1 \\ 3 & 2 & 3 \\ 2 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 301 \end{bmatrix}$ then 2p + q r equals:
 - (a) -3
- (b) -1

(c) 4

(d) 2

- 30. The matrix $\begin{bmatrix} \lambda & -1 & 4 \\ -3 & 0 & 1 \\ -1 & 1 & 2 \end{bmatrix}$ is invertible, if
 - (a) $\lambda \neq -17$
- (b) $\lambda \neq -18$
- (c) $\lambda \neq -19$
- (d) $\lambda \neq -20$

- 31. At $x = \frac{5\pi}{6}$, $f(x) = 2\sin 3x + 3\cos 3x$ is
 - (a) maximum 1

(b) minimum

(c) zero

- (d) neither maximum nor minimum
- 32. The point of discontinuity of $f(x) = \tan\left(\frac{\pi x}{x+1}\right)$ other than x = -1 are:
 - (a) x=0

(b) $x = \pi$

(c) $x = \frac{2m+1}{1-2m}$

- $(d) \quad x = \frac{2m-1}{2m+1}$
- 33. If $A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$, then the value of |adj A| is
 - (a) a^{2}

(b) a^9

(c) a^6

- (d) a^2
- **34.** If a matrix has 8 elements, then which of the following will not be a possible order of the matrix?
 - (a) 1×8

(b) 2×4

(c) 4×2

- (d) 4×4
- 35. The maximum vale of P = x + 3y such that $2x + y \le 20$, $x + 2y \le 20$, $x \ge 0$, $y \ge 0$ is
 - (a) 10

(b) 60

(c) 30

(d) None

- **36.** The point on the curve $x^2 = 2y$ which is nearest to the point (0, 5) is
 - (a) $(2\sqrt{2},4)$
- (b) $(2\sqrt{2},0)$
- (c) (0,0)
- (d) (2,2)

Sample Paper-1

37. If a function
$$f(x)$$
 is defined as $f(x) = \begin{cases} \frac{x}{\sqrt{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ then:

- (a) f(x) is continuous at x = 0 but not differentiable at x = 0
- (b) f(x) is continuous as well as differentiable at x = 0

(c) f(x) is discontinuous at x = 0

- (d) None of these.
- Which of the following is not a vertex of the positive region bounded by the inqualities $2x + 3y \le 6$, $5x + 3y \le 15$ and $x, y \ge 0$
 - (a) (0,2)
- (b) (0,0)

- (c) (3,0)
- (d) None

- 39. If $\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$, then x is equal to

- (c) -6
- (d) 6, 6.

40. If
$$f(x) = \begin{cases} xe^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 then $f(x)$ is

- (a) discontinuous every where
- (b) continuous as well as differentiable for all x
- (c) continuous for all x but not differentiable at x = 0
- (d) neither differentiable nor continuous at x = 0

SECTION-C

In this section, attempt any 8 questions. Each question is of 1 mark weightage. Questions 46-50 are based on a case-study.

- **41.** Let $R = \{(3,3)(5,5),(9,9),(12,12),(5,12),(3,9),(3,12),(3,5)\}$ be a relation on the set $A = \{3,5,9,12\}$. Then, R is:
 - (a) reflexive, symmetric but not transitive.
 - (c) an equivalence relation.
- 42. If $R = \{(x, y) : x \text{ is father of } y\}$, then R is
 - (a) reflexive but not symmetric
 - (c) neither reflexive nor symmetric nor transitive
- 43. The domain of the function

$$\cos^{-1}\log_2(x^2 + 5x + 8)$$
 is-

- (a) [2,3]
- (c) [-2, 2]

- (b) symmetric, transitive but not reflexive.
- (d) reflexive, transitive but not symmetric.
- symmetric and transitive
- (d) Symmetric but not reflexive
- (b) [-3, -2]
- (d) [-3, 1]
- **44.** If $\sin^{-1} x = \tan^{-1} y$, what is the value of $\frac{1}{x^2} \frac{1}{y^2}$?
 - (a) 1
 - $(c) \quad 0$
- **45.** Domain of $\cos^{-1}[x]$ is
 - (a) [-1, 2]
 - (c) (-1,2]

- (b) -1
- (d) 2
- (b) [-1,2)
- (d) None of these

Target Mathematics by- Dr. Agyat Gupta

Resi.: D-79 Vasant Vihar; Office: 89-Laxmi bai colony

visit us: agyatgupta.com;Ph. :7000636110(O) Mobile : 9425109601(P)

SP-6 Mathematics

Case Study

For sport day activity the class teacher of class-XII measures the weight of students. The set of their weight is given as $W = \{40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50\}$.

Based on the above information answer the following:

46. If the relation R in set W define as $R = \{(x, y) : |x - y| = 1\}$ then R is

(a) Reflexive

(b) Symmetric

(c) Transitive

(d) Equivalence

47. If the relation R in set W define as $R = \{(x, y): x > y\}$ then R is

(a) Reflexive

(b) Symmetric

(c) Transitive

(d) Equivalence

48. The number of relations from W to W are

(a) 100

(b) 20

(c) 2^{100}

(d) 2^{121}

49. The number of non-empty relation from W to W are

(a) 2^{10}

(b) 2^{100}

(c) $2^{121}-1$

(d) 99

50. If set A have m and set B have n elements then number of ordered pair $A \times B$ is

(a) m+n

(b) mn

(c) 2^{mn}

(d) mⁿ
