Resi.: D-79 Vasant Vihar; Office: 89-Laxmi bai colony visit us: agyatgupta.com;Ph.:7000636110(O) Mobile: 9425109601(P)

SAMPLE PAPER-00C

MATHEMATICS

A Highly Simulated Practice Questions Paper for CBSE **Class XII** (Term I) Examination

Instructions

- 1. This question paper contains three sections A, B and C. Each section is compulsory.
- 2. Section A has 20 MCQs, attempt any 16 out of 20.
- 3. Section B has 20 MCQs, attempt any 16 out of 20.
- 4. Section C has 10 MCQs, attempt any 8 out of 10.
- 5. There is no negative marking.
- 6. All questions carry equal marks.

Roll No.					Maximum Marks: 40
					Time allowed : 90 min

Section A

In this section, attempt any 16 questions out of Questions 1-20. Each question is of 1 mark weightage.

1. The point at which the tangent to the curve $y = \sqrt{4x - 3} - 1$ has its slope $\frac{2}{3}$ is

2. The value of
$$\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
 $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$ is

(a)
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 1 & 2 \end{bmatrix}$ (c)
$$\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

- **3.** If for any 2×2 square matrix A, A adj $(A) = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$, then the value of $\frac{|A|}{5}$ is
- (a) 64 (b) 1 (c) 5 (d) 32 **4.** If $\begin{bmatrix} 4 & 3 \\ x & 5 \end{bmatrix} = \begin{bmatrix} y & z \\ 1 & 5 \end{bmatrix}$, then the value of xyz is (a) 10 (b) 12 (c) 15 (d) 0

Resi.: D-79 Vasant Vihar; Office: 89-Laxmi bai colony visit us: agyatgupta.com;Ph. :7000636110(O) Mobile : 9425109601(P)

- 5. If $x = \sin \theta$, $y = \tan \theta$, then $\frac{dy}{dx}$ at $\theta = \frac{\pi}{3}$ is equal to
 - (a) 1

(c) 3

- (d) 4
- **6.** If *A* is a square matrix such that $A^2 = I$, then $A + A^{-1}$ is equal to
- (b) A

- (d) 2A
- 7. The equation of tangent to the curve $y = 2x^2 + 3\sin x$ and (0, 0) is
- (b) y = -3x
- (c) x = 3y

- **8.** If $[x \ 1]\begin{bmatrix} 1 & 0 \\ -2 & 0 \end{bmatrix} = 0$, then x^2 is equal to

(c) 8

(d) 1

- **9.** The value of $\cos\left(\frac{1}{2}\sin^{-1}\frac{\sqrt{3}}{2}\right)$ is

 - (a) $\frac{1}{2}$ (b) $\frac{\sqrt{3}}{2}$
- (c) $\frac{1}{\sqrt{2}}$
- (d) None of these

- **10.** The principal value of $\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ is
 - (a) $\frac{-2\pi}{3}$ (b) $-\frac{\pi}{3}$
- (c) $\frac{4\pi}{3}$
- (d) $\frac{5\pi}{3}$
- **11.** Let *X* be the set of all persons living in a city. Persons *x*, *y* in *X* are said to be related as x < y, if y is at least 5 yr older than x. Which one of the following is correct?
 - (a) The relation is an equivalence relations on X
 - (b) The relation is transitive but neither reflexive nor symmetric
 - (c) The relations is reflexive but neither transitive nor symmetric
 - (d) The relation is symmetric but neither transitive nor reflexive
- **12.** Let *S* denote set of all integers. Define a relation *R* on *S* as 'aRb' if $ab \ge 0$, where $a, b \in S$. Then, R is
 - (a) reflexive but neither symmetric nor transitive relation
 - (b) reflexive, symmetric but not transitive relation
 - (c) an equivalence relation
 - (d) symmetric but neither reflexive nor transitive relation
- **13.** If $\begin{bmatrix} x+y \\ x-y \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, then (x, y) is
- (b) (1, -1) (c) (-1, 1)
- (d)(-1,-1)

- **14.** If $\Delta = \begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & 7 \end{vmatrix}$, then $\frac{M_{21}}{M_{32} 1}$ is equal to

(c) 3

(d)4

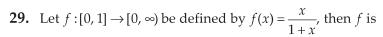
- **15.** If $\begin{vmatrix} x & -1 \\ 9 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 9 & 6 \end{vmatrix}$, then x is equal to
- (b) ± 3
- (c) 3
- (d)3

Resi.: D-79 Vasant Vihar; Office: 89-Laxmi bai colony visit us: agyatgupta.com; Ph.: 7000636110(O) Mobile: 9425109601(P)

 $(c)(-\infty,\infty)$

(d) None of these

16. The function $f(x) = \log x$ is strictly increasing on


(b) (0, ∞)

(a) [-1,0]

17.	The function $f(x)$:	$= x^3 - 3x^2 + 3x - 10 $ in the	ne interval (– ∞, ∞) is									
	(a) decreasing	(b) increasing	(c) strictly increasing	(d) strictly decreasing								
18.	The slope of the ta	angent to the curve $x = 3$	$3t^2 + 1$, $y = t^3 - 1$ at $x = 1$	is								
	(a) - 1	(b) 1	(c) 0	(d) 2								
19.	$ \operatorname{If} x \begin{bmatrix} 2x & 2 \\ 3 & x \end{bmatrix} + 2 \begin{bmatrix} 8 \\ 4 \end{bmatrix} $	$\begin{bmatrix} 5x \\ 4x \end{bmatrix} = 2 \begin{bmatrix} x^2 + 8 & 24 \\ 10 & 6x \end{bmatrix}, \text{ th}$	x^2 is equal to									
	(a) 4	(b) 16	(c) 2	(d) 1								
20.	The point on the curve $y = x^2 - 4x + 5$, where tangent to the curve is parallel to the <i>X</i> -axis is											
	(a) (0, 5)	(b) (-1,0)	(c) (1, 2)	(d) (2, 1)								
	Section B											
			tions 21-40. Each question									
21.	If $y = (\cot^{-1} x)^2$ and	$d(x^2+1)^2 \frac{d^2y}{dx^2} + 2x(x^2+1)^2$	$+1)\frac{dy}{dx} = K$, then K is equ	ial to								
	(a) 1	(b) 2	(c) 5	(d) 7								
22.	If $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$, then	$A^2 + 3A - 2I$ is equal to										
	$(a)\begin{bmatrix} 2 & 6 \\ 0 & 8 \end{bmatrix}$	$(b)\begin{bmatrix} 2 & 0 \\ 4 & 6 \end{bmatrix}$	$ (c) \begin{bmatrix} 0 & 6 \\ 2 & 4 \end{bmatrix} $	$ (d) \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} $								
23.	The equation of no	ormal at the point (1, 1)	on the curve $2y + x^2 = 3$	3 is								
	(a) $x + y = 0$	(b) $x - y = 0$	(c) $x + y + 1 = 0$	(d) x - y = 1								
24.	If $x = a(t - \sin t)$, $y =$	$= a(1 + \cos t), \text{ then } \frac{dy}{dx} \text{ at } t$	$t = \frac{\pi}{2}$ is equal to									
	(a) - 1	(b) 0	(c) 3	(d) 8								
25.	If $y = \log(xy)$, then	$\frac{dy}{dx}$ at (1, 2) is equal to										
	(a) 1	(b) 2	(c) 3	(d) 4								
26.	The maximum val	ue of the function $f(x)$:	$=-(x-1)^2+8$ is									
	(a) 7	(b) 8	(c) 0	(d) 1								
27.	The value of $\sin \left[\frac{\pi}{2} \right]$	$\left[\frac{2}{3} - \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right]$ is										
	(a) $\frac{1}{2}$	(b) $-\frac{1}{2}$	(c) 1	(d) - 1								
28.	The function $f:R$	$\rightarrow R$ defined by $f(x) = -\frac{1}{x}$	$\frac{x}{(x^2+1)}$, $\forall x \in R$ is									
	(a) one-one	(b) not one-one	(c) bijective	(d) None of these								

Dr. AGYAT GUPTA MOB: 9425109601

Resi.: D-79 Vasant Vihar; Office: 89-Laxmi bai colony visit us: agyatgupta.com;Ph. :7000636110(O) Mobile : 9425109601(P)

(a) one-one but not onto

(b) onto but not one-one

(c) both one-one and onto

- (d) neither one-one nor onto
- **30.** If $A = \begin{bmatrix} 1 & 5 \\ 3 & 9 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then
 - (a) AB = BA
- (b) *AB*≠ *BA*
- (c) $A^2 = B$
- (d) None of these

- **31.** If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, then |3A| is equal to
 - (a) 3 | A |
- (b) 9 | *A* |
- (c) | A |
- (d) 27 | A |
- **32.** If at x = 1, then function $f(x) = x^4 62x^2 + ax + 9$ attains its maximum value on the interval [0, 2], then the value of a is
- (c) 120
- (d) 128

- 33. If $y = 3\cos x + 3\sin x$, then $\frac{d^2y}{dx^2} + y$ is equal to
 - (a) 0

(c) 2

(d) 3

- **34.** If $y = e^{-3x}$ and $\frac{d^2y}{dx^2} = Ky$, then K is equal to

(c) 2

(d) 1

- **35.** If $y = 2 \log \sin x$, then $\frac{d^2 y}{dx^2}$ is equal to
 - (a) $-2\csc^2 x$
- (b) $2 \csc^2 x$
- (c) $2 \cot^2 x$
- (d) $\sec^2 x$

- **36.** If $x = at^2$ and $y = at^3$, then $\frac{d^2y}{dx^2}$ at $t = \frac{3}{4}$ is equal to

(d) -1

- **37.** If $y = a \cos^3 t$ and $x = a \sin^3 t$, then $\frac{dy}{dx}$ at $t = \frac{\pi}{4}$ is
 - (a) 1

- (b) -1
- (c) 0

(d) 2

- **38.** The function $f(x) = (x 1)e^x + 2$ on [0, ∞) is
 - (a) increasing
- (b) decreasing
- (c) strictly decreasing (d) None of these
- **39.** For real numbers x and y, define a relation R, xRy if only if $x y + \sqrt{2}$ is an irrational number. The, the relation *R* is
 - (a) reflexive

(b) symmetric

(c) transitive

- (d) an equivalence relation
- **40.** The function $f(x) = x^3 + x^2 + x + 1$ has
 - (a) maximum value at x = -1
- (b) minimum value at x = -1
- (c) neither maximum nor minimum value
- (d) None of these

Resi.: D-79 Vasant Vihar; Office: 89-Laxmi bai colony visit us: agyatgupta.com; Ph.: 7000636110(O) Mobile: 9425109601(P)

Section C

In this section, attempt any 8 questions. Each question is of 1 mark weightage. Questions 46-50 are based on Case-Study.

41. If
$$x = \tan\left(\frac{1}{a}\log y\right)$$
 and $(1+x^2)\frac{d^2y}{dx^2} + 2x\frac{dy}{dx} = k\frac{dy}{dx}$, then k is equal to

(a) a (b) $\frac{a}{2}$ (c) $2a$ (d) 1

42. If
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, then A^{50} is equal to

(a) $2^{49}A$ (b) $2A$ (c) $49A$ (d) $2^{99}A$

- **43.** The function f given by $f(x) = x^2 x + 1$ on (-1, 1) is
 - (a) strictly decreasing(c) neither strictly increasing nor strictly decreasing
- (b) strictly increasing(d) None of these

(d) 0

- **44.** If $y = \sin^{-1} x$ and $(1 x^2) \frac{d^2 y}{dx^2} = k \frac{dy}{dx}$, then k is equal to
- **45.** If $\lambda^3 = -2$, then the value of $\begin{vmatrix} 1 & 2\lambda & 1 \\ \lambda^2 & 1 & 3\lambda^2 \\ 2 & 2\lambda & 1 \end{vmatrix}$ is (a) -11 (b) -12 (c) -13 (d) 0

CASE STUDY

Suppose a dealer in rural area wishes to propose a number of sewing machines. He has some money to invest and has space for few items for storage.

Let x denotes the number of electronic sewing machines and y denotes the number of manually operated sewing machines purchased by the dealer. For the same, constraint related to investment is given by $3x + 2y \le 48$.

And objective function is Z = 22x + 18y.

And other constraints consists the following $x + y \le 20$, $x, y \ge 0$. Based on above information, answer the following questions.

- **46.** Number of corner points of the feasible region is
 - (a) 3 (b) 4 (c) 5 (d) 6
- **47.** Sum of values of *Z* at all the corner points is

 (a) 1008
 (b) 1104
 (c) 1100
 (d) 1108
- **48.** To get the maximum profit (i.e. maximise *Z*) how many electronic sewing machines should be purchased by the dealer.
- (a) 12 (b) 8 (c) 10 (d) 5 **49.** To get the maximum profit (i.e. maximise *Z*) how many manually operated sewing
- machines should be purchased by the dealer.

 (a) 10 (b) 5 (c) 8 (d) 12
- **50.** $Z|_{\text{max}} Z|_{\text{min}}$ is equal to (a) 360 (b) 392 (c) 352 (d) None of these

Dr. AGYAT GUPTA MOB: 9425109601