

TERM-1

SAMPLE PAPER

AG-TMC-TS-J

MATHEMATICS

(STANDARD)

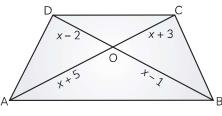
Time Allowed: 90 Minutes

Maximum Marks: 40

General Instructions: Same instructions as given in the Sample Paper 1.

SECTION - A

16 Marks


(Section A consists of 20 questions of 1 mark each. Any 16 questions are to be attempted.)

- 1. The ratio of HCF and LCM of numbers 28 and 32 is:
 - (a) 4:27
- (b) 1:56
- (c) 56:1
- (d) 27:4
- 2. In a group of three friends, the probability of two friends not having the same birthday is 0.992. Then, what is the probability that the two friends have the same birthday?
 - (a) 0.001
- (b) 0.008
- (c) 0.007
- (d) 0.006
- 3. What is the length of side AC in △ABC, which is right angled at B if BC = 5 cm and \angle BAC = 30°?
 - (a) 5 cm
- (b) 15 cm
- (c) 10 cm
- (d) 7 cm
- 4. Consider an isosceles right angled triangle $\triangle ABC$ at C, then $AB^2 = \dots$ times AC^2 .
 - (a) 1
- (b) 2
- (c) 3
- (d) 4
- 5. If the zeroes of the polynomial $x^2 2kx + 2$ are equal in magnitude but opposite in sign, then the value of k is:
 - (a) 0
- (b) 1
- (c) 2
- (d) 3
- 6. What is the distance of the point P(3, -4) from the origin?
 - (a) 3 units
- (b) 4 units
- (c) 5 units
- (d) 6 units

- 7. Evaluate the approximate area covered by hour hand in 1 hour, where the length of hour hand of a clock is 7 cm.
 - (a) 9 cm^2
- (b) 11 cm²
- (c) 13 cm^2
- (d) 15 cm^2
- 8. Find the value of y, from the equations

$$x - y = 0.9$$
 and $\frac{11}{x + y} = 2$.

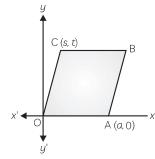
- (a) 1.2
- (b) 2.1
- (c) 3.2
- (d) 2.3
- Evaluate for x, if, AB || DC in the given figure.

- (a) 6
- (b) 7
- (c) 8
- (d) 4
- What is the area of a square inscribed in a circle having diameter p cm?
 - (a) $\frac{p^2}{2}$ cm²
- (c) $\frac{\pi p^2}{2}$ cm² (d) πp^2 cm²

Target Mathematics by- Dr. Agyat Gupta

(M.Sc, B.Ed., M.Phill, P.hd)

- **11.** The HCF of co-prime numbers 17 and 43 is:
- (b) 6
- (c) 1
- (d) 3
- **12.** In △ABC, D and E are points on sides AB and AC respectively such that DE || BC. If AE = 1.8 cm, BD = 7.2 cm and CE = 5.4 cm, then the length of AD is:
 - (a) 3.6 cm
- (b) 2.8 cm
- (c) 2.4 cm
- (d) 1.8 cm
- **13.** If α and β are the zeroes of a polynomial $x^2 - 3x - 4$, then the polynomial whose zeroes are $(\alpha + \beta)$ and $\alpha\beta$ is:
 - (a) $x^2 x + 12$
- (b) $x^2 + x 12$
- (c) $x^2 x 12$
- (d) $x^2 + x + 12$
- f 14. What is the probability of getting a consonant, when a letter of English alphabet is chosen at random?
 - (a) 26
- (c)
- **15.** If AD is a median of $\triangle ABC$ with vertices A (5, -7), B (4, 7) and C (6, -5), then what are the coordinates of D?
 - (a) (5, 1)
- (b) (-1, 1)
- (c) (-5, 1)
- (d) (1, 1)
- **16.** Evaluate for what value of *k*, the system of equations 2x - y = 5 and 6x + ky = 15 has infinitely many solutions.

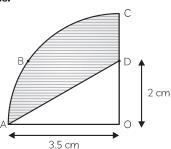

- (a) 8
- (b) -3
- (c) 3
- (d) 6
- 17. A situation is given. Represent it in the form of linear equations. 5 books and 7 pens together cost ₹ 79 whereas 7 books and 5 pens together cost ₹ 77. Here consider cost of each book as \overline{x} and that of each pen as
 - (a) 17x + 7y = 79, 5x + 5y = 77
 - (b) 5x + 7y = 79, 7x + 5y = 77
 - (c) 5x + 5y = 79, 7x + 7y = 77
 - (d) Data insufficient
- **18.** Given two triangles ABC and DEF such that $\triangle ABC \sim \triangle DEF$. Also, $ar(\triangle ABC) = 25$ cm², ar ($\triangle DEF$) = 64 cm² and AB = 5 cm. Then length of side DE is:
 - (a) 8 cm
- (b) 10 cm
- (c) 4 cm
- (d) 12 cm
- **19.** The product of $(3+\sqrt{3})$ and $(3-\sqrt{5})$ is:
 - (a) a rational number
 - (b) an irrational number
 - (c) a prime number
 - (d) a co-prime number
- **20.** $0x^2 + 2x 5$ is an example of a:
 - (a) cubic polynomial
 - (b) quadratic polynomial
 - (c) linear polynomial
 - (d) quadratic equation

SECTION - B

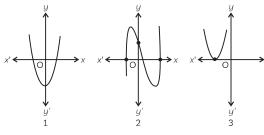
16 Marks

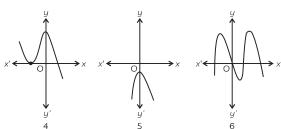
(Section B consists of 20 questions of 1 mark each. Any 16 questions are to be attempted.)

- 21. A girl of height 90 cm is standing near a lamp-post. Now, she starts walking away from the base of a lamp post at a speed of 1.2 m/s. If the lamp is 3.6 m above the ground, then what is the length of her shadow after 4 seconds?
 - (a) 1.6 m
- (b) 1.5 m
- (c) 3 m
- (d) 2 m
- 22. In the figure, OABC is rhombus and O is the origin. If the coordinates of A and C are (a, 0) and (s, t), respectively, then the coordinates of B are:



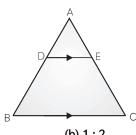
- (a) (s, a + t)
- (b) (a, s + t)
- (c) (a + s, t)
- (d) (s + t, a)
- **23.** If α and β are the zeroes of the polynomial $p(x) = x^2 - 5x + k$ and $\alpha - \beta = 1$, then the value of k is:
 - (a) 7
- (b) 6
- (c) 5
- (d) 4
- **24.** For two linear equations $a_1x + b_1y + c_1$ = 0 and $a_2x + b_2y + c_2 = 0$, the condition
 - $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ is for:
 - (a) Unique solution
 - (b) Infinite solutions
 - (c) No solution
 - (d) Data insufficient
- 25. What is the probability of getting the sum of perfect square, in a single throw of a pair of dice?
 - 36


Target Mathematics by- Dr. Agyat Gupta

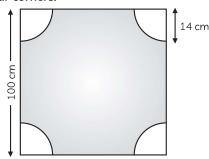

(M.Sc, B.Ed., M.Phill, P.hd)

- **26.** Evaluate $\sin \theta$. $\cos \theta$, if $\sin \theta + \cos \theta = \sqrt{2}$.
 - (a) $\sqrt{2}$
- (b) 1
- (c) 0
- (d) $\frac{1}{2}$
- 27. The area of shaded region in the given figure

- (a) 6.125 cm^2
- (b) 5.5 cm^2
- (c) 2.625 cm^2
- (d) 12.25 cm^2
- 28. Evaluate the least number which when divided by the numbers 18, 24, 30 and 42 leaves a remainder of 1.
 - (a) 4221
- (b) 2521
- (c) 3862
- (d) 1221
- **29.** The decimal expansion of $\frac{17}{125}$ is:
 - (a) 0.017
- (b) 0.136
- (c) 0.68
- (d) 4.25
- **30.** The graph of a polynomial function is a smooth continuous curve. By looking at graph, we can find the number of zeros of the polynomial. Graphs are the geometrical meaning of the polynomials. They help us to understand their type, nature of its zeroes and coefficients of its various terms.


Which of the above graph represent quadratic polynomials?

- (a) 1 and 3
- (b) 1, 3 and 5
- (c) Only 5
- (d) Only 6
- **31.** If a + b + c = 0 and A(a, b), B(b, c) and C(c, a)are vertices of \triangle ABC, then the coordinates of its centroid are:


(a)
$$\left(\frac{a+b+c}{2}, \frac{a+b+c}{2}\right)$$

(b)
$$\left(\frac{a+b+c}{3}, \frac{a+b+c}{3}\right)$$

- (c)(1,1)
- (d)(0,0)
- **32.** If a number is selected at random from the numbers 1 to 30, then the probability that it is a prime number, is:
 - (a)
- (c)
- 33. In the figure, DE || BC. If AD = 1 cm and BD = 2 cm, then the ratio of areas of $\triangle ADE$ and ∆ABC is:

- (a) 1:4
- (b) 1:2
- (c) 2:3
- (d) 1:9
- **34.** Find the area of shaded region in the given figure in which the square is of side 100 cm and quadrant of radius 14 cm is formed at four corners.

- (a) 9384 cm²
- (b) 8998 cm²
- (c) 9212 cm^2
- (d) 9656 cm^2
- **35.** Evaluate one of the common solution of ax + by = c and y-axis?
 - (a) (0, b)
- (b) $\left(0,\frac{c}{b}\right)$
- (c) $\left(0, \frac{a}{c}\right)$
- (d) (0, 0)

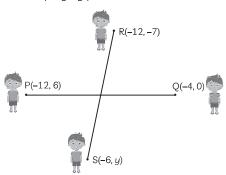
Target Mathematics by- <u>Dr.</u>Agyat Gupta

(M.Sc, B.Ed., M.Phill, P.hd)

- **36.** The graphical representation of x 2y + 4 =0 and x + 4y + 2 = 0 will be:
 - (a) coincident lines
 - (b) parallel lines
 - (c) intersecting lines
 - (d) Data insufficient
- 37. Which of the following is an example of nonterminating decimal?

- **38.** If x = 2 is a zero of polynomial $ax^2 bx + 2$, then what is the relation between a and b?
 - (a) 2a b + 1 = 0
- (b) a + b + 1 = 0
- (c) a b + 1 = 0
- (d) 7a 5b + 1 = 0
- **39.** $\triangle ABC \sim \triangle PQR$. If AB = 4 cm, BC = 3 cm, CA = 7 cm and PR = 2 cm, then the perimeter of $\triangle POR$ is:
 - (a) 2 cm
- (b) 4 cm
- (c) 14 cm
- (d) 7 cm
- **40.** If the HCF of 408 and 1032 is expressible in the form $1032 \times 2 + 408 \times p$, then the value
 - (a) -10
- (b) -15
- (c) -5
- (d) 10

SECTION - C


8 marks

(Case Study Based Questions.)

(Section C consists of 10 questions of 1 mark each. Any 8 questions are to be attempted.)

Q. 41-45 are based on case study-1 Case Study-1:

Four friends visited a nearby park to play. They decided to play with the ball. So they get stood the four corners P, Q, R, S of the rectangulor park PQRS and started playing pass the ball.

- **41.** If A is the mid-point of P and Q, then find the coordinates of A.
 - (a) (3, -8)
- (b) (2, -8)
- (c) (-8, 2)
- (d) (-8, 3)
- **42.** If k:1 is the ratio in which point A divides the line RS, then the value of k is:
 - (a) 5
- (b) 4
- (c) 3
- (d) 2
- **43.** What are the coordinates of the point S?
 - (a) (-6, 9)
- (b) (-6, 8)
- (c) (-6, 7)
- (d) (-6, 6)
- 44. Calculate the total distance between the points P and Q.
 - (a) 9 units
- (b) 10 units
- (c) 8 units
- (d) 7 units
- 45. What is the distance between the points S and R?

- (a) $2\sqrt{29}$ units
 - (b) $3\sqrt{29}$ units
- (c) $\sqrt{26}$ units (d) $2\sqrt{26}$ units

Q. 46-50 are based on Case Study-2 Case Study-2:

Located in Nigdi, the Bhakti Shakti flag was set up by the Pimpri Chinchwad Municipal Corporation (PCMC) in 2018. The approximately 105 metre high flagpole weighs 42 tonnes and the flag is made up of knitted polyester and the flag itself weighs 90 kg and can sustain winds up to 25 km per hour. The height of the flag is shown in the picture as PQ and the distance between the foot of the flagpole Q and a point R on the ground is 208 m.

- 46. The value of cos R is:
 - 105 233
- 208
- 208 105
- 208 233
- 47. The value of sin P is:
 - 233
- 208
- 208
- 105

Farget Mathematics by- Dr. Agyat Gupta

48. The value of cosec R is:

(a) $\frac{208}{233}$

(c) $\frac{208}{105}$

(d) $\frac{105}{233}$

49. The value of $tan^2 P - sec^2 P$ is:

(c) -1

(d) 2

50. tan P – cot R is:

(b) 0

(c) -1

(d) 2

Target Mathematics by Dr. Agyat Gupta

Target Mathematics