Sample Question Paper - AG-TMC-TS-T Class - X Session -2021-22 TERM 1 Subject- Mathematics (Standard) 041

Maximum Marks: 40

Time Allowed: 1 hour and 30 minutes

General Instructions:

a) 480

- 1. The question paper contains three parts A, B and C.
- 2. Section A consists of 20 questions of 1 mark each. Attempt any 16 questions.
- 3. Section B consists of 20 questions of 1 mark each. Attempt any 16 questions.
- 4. Section C consists of 10 questions based on two Case Studies. Attempt any 8 questions.
- 5. There is no negative marking.

	5. There is no negative marking.		
	Sec	ction A	
Attempt any 16 questions			
1.	The largest number which divides 70 and 12	5, leaving remainders 5 and 8, respectively, is	[1]
	a) 875	b) 65	
	c) 13	d) 1750	
2.	If the system of equations		[1]
	3x + y = 1 and		
	(2k-1) x + (k-1) y = 2k + 1		
	is inconsistent, then k =		
	a) -1	b) 1	
	c) 2	d) 0	
3.	In \triangle ABC, it is given that AB = 9 cm, BC = 6 cm	n and CA = 7.5 cm. Also, \triangle DEF is given such that	[1]
	EF = 8 cm and \triangle DEF ~ \triangle ABC. Then, perimeter of \triangle DEF is		
	a) 30 cm	b) 22.5 cm	
	c) 27 cm	d) 25 cm	
4.	If $29x + 37y = 103$ and $37x + 29y = 95$ then		[1]
	a) $x = 3, y = 2$	b) $x = 2, y = 1$	
	c) $x = 2, y = 3$	d) $x = 1, y = 2$	
5.	If 8 tan $x = 15$, then $\sin x - \cos x$ is equal to		[1]
	a) $\frac{17}{7}$	b) $\frac{8}{17}$	
	c) $\frac{7}{17}$	d) $\frac{1}{17}$	
6.	The least positive integer divisible by 20 and 24 is		[1]

Dr. AGYAT GUPTA MOB:9425109601

b) 240

- If -2 and 3 are the zeros of the quadratic polynomial x^2 + (a + 1)x + b then 7.
 - b) a = 2, b = -6

a) a = 2, b = 6c) a = -2, b = -6

- d) a = -2, b = 6
- 8. In Fig, the area of the shaded region is

[1]

a) 9π cm²

b) 6π cm²

c) 7π cm²

- d) 3π cm²
- A quadratic polynomial whose product and sum of zeroes are $\frac{1}{3}$ and $\sqrt{2}$ respectively is 9.
 - [1]

a) $3x^2 - x + 3\sqrt{2}x$

b) $3x^2 - 3\sqrt{2}x + 1$

c) $3x^2 + x - 3\sqrt{2}x$

- d) $3x^2 + 3\sqrt{2}x + 1$
- 10. In a \triangle ABC it is given that AB = 6 cm, AC = 8 cm and AD is the bisector of \angle A. Then, BD : DC = ? [1]

a) 3:4

b) 9:16

c) $\sqrt{3}:2$

- d) 4:3
- 11. A card is selected at random from a well shuffled deck of 52 playing cards. The probability of [1] its being a face card is
 - a) $\frac{3}{26}$

b) $\frac{3}{13}$

c) $\frac{1}{26}$

d) $\frac{4}{13}$

12. $7 \times 11 \times 13 + 13$ is a/an: [1]

- a) odd number but not composite
- b) square number

c) prime number

- d) composite number
- The circumference of a circle is 100 cm. The side of a square inscribed in the circle is 13.
- [1]

a) $\frac{50}{\pi}$

b) $50\sqrt{2}$

- d) $\frac{50\sqrt{2}}{\pi}$
- 14. If the sum of the areas of two circles with radii r_1 and r_2 is equal to the area of a circle of [1] radius r, then $r_1^2 + r_2^2$

a) _r2

b) $< r^2$

c) None of these

- d) $> r^2$
- 15. In the given figure if BP||CF, DP||EF, then AD : DE is equal to

[1]

a) 1:3

b) 1:4

c) 3:4

- d) 2:3
- 16. If $\cot A + \frac{1}{\cot A} = 2$ then $\cot^2 A + \frac{1}{\cot^2 A} =$

[1]

a) 1

b) -1

c) 2

- d) 0
- 17. The sum of the numerator and denominator of a fraction is 18. If the denominator is increased [1] by 2, the fraction reduces to $\frac{1}{3}$. The fraction is
 - a) $\frac{-7}{11}$

b) $\frac{5}{13}$

c) $\frac{-5}{13}$

- d) $\frac{7}{11}$
- 18. A bag contains 3 red, 5 black and 7 white balls. A ball is drawn from the bag at random. The probability that the ball drawn is not black, is:
 - a) $\frac{5}{10}$

b) $\frac{2}{3}$

c) $\frac{1}{3}$

- d) $\frac{9}{15}$
- 19. The HCF of two consecutive numbers is

[1]

a) 2

b) 0

c) 3

- d) 1
- 20. In fig, the shaded area is (radius = 10cm)

[1]

a) 25 (π – 2) cm²

b) $5 (\pi - 2) \text{ cm}^2$

c) 25 (π +2) cm²

d) $50 (\pi - 2) \text{ cm}^2$

Section B

Attempt any 16 questions

Dr. AGYAT GUPTA MOB:9425109601

value of **a** is:

a) -4

b) 4

c) -8

d) -2

Section C

Attempt any 8 questions

Question No. 41 to 45 are based on the given text. Read the text carefully and answer the questions:

Ankit's father gave him some money to buy avocado from the market at the rate of $p(x) = x^2 - 24x + 128$.

Let α , β are the zeroes of p(x).

41. Find the value of α and β , where $\alpha < \beta$.

a) 8, 16

b) 4, 9

c) 8, 15

d) -8, -16

42. Find the value of $\alpha + \beta + \alpha \beta$.

[1]

[1]

a) 158

b) 152

c) 151

d) 155

43. The value of p(2) is

[1]

a) 81

b) 83

c) 80

d) 84

44. If α and β are zeroes of $x^2 + x - 2$, then $\frac{1}{\alpha} + \frac{1}{\beta} =$

[1]

a) $\frac{1}{3}$

b) $\frac{1}{2}$

c) $\frac{1}{5}$

d) $\frac{1}{4}$

45. If sum of zeroes of $q(x) = kx^2 + 2x + 3k$ is equal to their product, then k = 2x + 3k

[1]

a) $\frac{-2}{3}$

b) $\frac{1}{3}$

c) $\frac{-1}{3}$

d) $\frac{2}{3}$

Question No. 46 to 50 are based on the given text. Read the text carefully and answer the questions:

Students of residential society undertake to work for the campaign \mathbf{Say} no to $\mathbf{Plastics}$. Group A took the region under the coordinates (3, 3), (6, y), (x, 7) and (5, 6) and group B took the region under the

Target Mathematics by- Dr. Agyat Gupta

Resi.: D-79 Vasant Vihar; Office: 89-Laxmi bai colony visit us: agyatgupta.com; Ph.: 7000636110(O) Mobile: 9425109601(P)

Target Mathematics by Dr. Agyat Gupta

coordinates (1, 3), (2, 6), (5, 7) and (4, 4).

[1]

- If region covered by group A forms a parallelogram, where the coordinates are taken in the 46. [1] given order, then
 - a) x = 8, y = 4

b) x = 2, y = 4

c) x = 4, y = 8

- d) x 4, y = 2
- 47. Perimeter of the region covered by group A is
 - a) $(\sqrt{10} + \sqrt{13})$ units

b) none of these

c) $\sqrt{13}$ units

- d) $\sqrt{10}$ units
- If the coordinates of region covered by group B, taken in the same order forms a quadrilateral, [1] 48. then the length of each of its diagonals is
 - a) $3\sqrt{2}$ units, $2\sqrt{2}$ units

b) $4\sqrt{2}$ units, $2\sqrt{2}$ units

c) $3\sqrt{2}$ units, $2\sqrt{2}$ units

- d) none of these
- 49. If region covered by group B forms a rhombus, where the coordinates are taken in given [1] order, then the perimeter of this region is
 - a) $2\sqrt{10}$ units

b) $\sqrt{10}$ units

c) $4\sqrt{10}$ units

- d) $3\sqrt{10}$
- 50. The coordinates of the point which divides the join of points $P(x_1, y_1)$ and $Q(x_2, y_2)$ internally [1] in the ratio m: n is
 - a) $\left(\frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n}\right)$

c) none of these

