EMINENT TUTORIALS Class-x

MATHEMATICS PAPER

PAPER NO. 4

Opp. Deep Palace,Rania Distt. Sirsa

Time Allowed: 90 minutes Maximum Marks: 40

General Instructions:

- 1. The question paper contains three parts A, B and C
- 2. Section A consists of 20 questions of 1 mark each. Any 16 questions are to be attempted
- 3. Section B consists of 20 questions of 1 mark each. Any 16 questions are to be attempted
- 4 Section C consists of 10 questions based on two Case Studies. Attempt any 8 questions.
- 5. There is no negative marking.

Sr.	S	ECTION-A	<u>M</u>		
No.	Section A contains 20 questions of 1 marks each . Any 16 question are to be attempted .				
1.	An electronic device makes a beep after every 60 seconds. Another device makes a beep after every 62 seconds. They beeped together at 10 a.m. At what time will they beep together at the earliest				
	(a)10: 31 a.m. $(b)10: 30 a.m.$	(c)10: 32 a.m. (d) None			
2.	Solution of $\frac{x+1}{2} + \frac{y-1}{3} = 8$; $\frac{x-1}{3} + \frac{y+1}{2}$				
	(a) $x = 6, y = 14$ (b) $x = 7, y = 13$	(c) $x = 5, y = 12$ (d) $x = 14, y = 16$	1		
3.	(a) $x = 6$, $y = 14$ (b) $x = 7$, $y = 13$ (c) $x = 5$, $y = 12$ (d) $x = 14$, $y = 16$ What is the length of an altitude of an equilateral triangle of side 8 cm ?				
	(a) $2\sqrt{3} \ cm$ (b) $3\sqrt{3} \ cm$	$(c) 4\sqrt{3} cm \qquad (d) 5\sqrt{3} cm$	1		
4.	In an equilateral \triangle ABC AD \perp BC, & AD ² = K BD ² , find k				
	(a)3 (b) $\frac{3}{4}$	(c) 7 (d)4			
5.	A bag contains blue, red and green balls. The probability of drawing red and blue balls are 0.6 and 0.03 respectively. The probability of drawing green ball is.				
	(a) 0.1 (b) 0.35	(c) 0.37 (d) 0.33			
6.	In $\triangle ABC$, DE \parallel BC. If $AD = 2.5$ cm, $AB = 7.5$ cm and $EC = 6$ cm then $AC = $				
	(a) 7 cm (b) 8 cm	(c) 9 cm (d) $10 cm$			
7.			1		
	$\frac{1}{Cosec\theta - 1} - \frac{1}{Cosec\theta + 1} = \underline{\hspace{1cm}}$				
	$(a)2 \tan^2\theta \qquad \qquad (b)2 \cot^2\theta$				
8.	Sum of two numbers is 120, their HCF is 24. How many such pairs of numbers exist?				
	(a) 2 (b) 3 If $2^{x-y} = 32$ and $2^{x+y} = 128$ then x and y i.	(c) 1 (d) 5			
9.	If $2^{x-y} = 32$ and $2^{x+y} = 128$ then x and y i.	is ()	<u>1</u>		
10	(a) x = 6, y = 1 $(b) x = 1, y = 6$	$\frac{-}{(c)} (c) x = 5, y = 2 (d) x = 4, y = 1$	1		
10.	If the points $A(1,2)$, $B(4,q)$, $C(p,6)$ and $D(3,5)$ are vertices of a parallelogram ABCD, find the				
	values of <i>p</i> and <i>q</i> (a) $p = -6$, $q = 3$ (b) $p = 6$, $q = -3$	(c) $p = 6, q = 3$ (d) None			

11.	Decimal representation	o ofis			1		
			(c) 0.00172	(d) 0.00129	=		
12.							
		<u>——</u>	(c) Whole Number	(d) Natural	1		
13.	In ΔABC, is right angle	ed at C , then the value of	Cos(A+B) is:		1		
	() 0	(1) 1	1	$(d) \frac{\sqrt{3}}{2}$			
	(a) 0	(b) 1	$\frac{(c)}{2}$	$(a) {2}$			
14.	(a) 0 (b) 1 (c) $\frac{1}{2}$ (d) $\frac{\sqrt{3}}{2}$ Given that $tan\theta = \frac{1}{\sqrt{3}}$, then the value of $\frac{Cosec^2\theta - Sec^2\theta}{Cosec^2\theta + Sec^2\theta}$ is (a) 3 (b) $\frac{8}{3}$ (c) $\frac{1}{2}$ (d) $\frac{1}{3}$ The area of the region between two concentric circles of radius 5 cm and 3 cm respectively is						
	(a) 3	(b) $\frac{8}{3}$	$(c) \frac{1}{2}$	$(d) \frac{1}{3}$			
15.	The area of the region	between two concentric	circles of radius 5 cm and 3 c	m respectively is	1		
	(a) $16\pi \ cm^2$	(b) $4\pi \ cm^2$	(c) $34\pi \ cm^2$	(d) None			
16.	Which is correct?				<u>1</u>		
	` '	•	me shape and same size.				
	(b) All similar triangle	· ·		,			
	(c) Two polygons are similar if their corresponding sides are proportional.						
17.	(d) Two triangles are similar if their corresponding sides are proportional If $\triangle ABC$ is an equilateral triangle such that $AD \perp BC$, then AD^2 is •						
	_	_			1		
	$(a)\frac{3}{2}DC^2$	$(b) 2DC^2$	$(c) 3DC^2$	$(d) 4DC^2$			
18.	$(a) \frac{3}{2}DC^2 \qquad (b) 2DC^2 \qquad (c) 3DC^2 \qquad (d) 4DC^2$ Given that $SinA = \frac{1}{2}$ and $CosB = \frac{1}{\sqrt{2}}$ then the value of $(A + B)is$						
				(d) 75°			
19.	(a) 15° (b) 30° (c) 45° (d) 75° There are two examination halls, P and Q. If 10 students are sent from P to Q, then the number of				1		
			are sent from Q to P, then the				
		(b) 70,50	ents in P and Q respectively (c) 80,60	(d) 100,80			
20.	<u> </u>		and not answering the qu		<u>1</u>		
	value of <i>x is</i> :	3 I 1	6	4 ′			
		(b) 10	(c) 16	(d) 24			
		SEC'	TION-B				
	Section B contai	ns 20 questions of 1 mar	ks each . Any 16 question a	re to be attempted			
21.		by 17 the remainder wo		•	1		
				(d) 3			
22.	(a) 1 (b) 14 (c) 16 (d) 3 A father's age is four times the sum of the ages of his two children. Five years hence his age will						
	4		n. Father's present age is				
	(a) 32 years Evaluate $\frac{\tan 45^{\circ}}{\cos c 30^{\circ}} + \frac{3}{6}$	(b) 40 years	(c) 60 years	(d) 44 years			
23.	Evaluate $\frac{\tan 45^{\circ}}{\cos \cos 30^{\circ}} + \frac{3}{6}$	$\frac{ec}{cot} \frac{60^{\circ}}{45^{\circ}} + \frac{Sin90^{\circ}}{2 \cos 0^{\circ}}$			1		
	(a) 0	(b) 1	(c) 2	(d) 3			
24.	(a) 0 (b) 1 (c) 2 (d) 3 The value of 'k' so that the system of equation $kx - y - 2 = 0$ and $6x - 2y - 3 = 0$ have no solution is:						
		(b) k = 4	(c) k = 3	(d) k = -3			

2E -	The smallest number that leaves remainders 1.2 and 2 respectively when divided by 2.2 and 4	1				
	The smallest number that leaves remainders 1,2 and 3 respectively when divided by 2,3 and 4					
	but completely divisible by 5 is (a) 65 (b) 75 (c) 55 (d) 45					
		1				
	them contain a cash prize of Rs 50 each and 200 of them contain a cash prize of Rs 10 each and					
	rest do not contain any cash prize. If they are well-shuffled and an envelope is picked up out,					
	then the probability that is contains no cash prize is					
	(a) 0.65 (b) 0.69 (c) 0.54 (d) 0.57	_				
	A bag contain 48 balls of which x are red, $2x$ are yellow and $3x$ are green. A ball is select at					
	random, then the probability that ball is red or green is:					
	$(a)\frac{1}{2}$ $(b)\frac{1}{3}$ $(c)\frac{2}{3}$ $(d)\frac{2}{5}$					
	If $x Sin^3\theta + y Cos^3\theta = Sin\theta Cos\theta$ and $x Sin\theta = y Cos\theta$, then $x^2 + y^2$ is equal to:	4				
	(a) 1 (b) 0 (c) -1 (d) 2	<u>1</u>				
	A line joining $A(4,6)$ and $B(7,-6)$ is trisected at P and Q . If P is nearer to A then co-ordinates of	4				
		<u>1</u>				
	P are (a) 11 (b) 11 (c) 12 (c) 13 (d) 13 (d) 13 (d) 14 (d) 15 (d)					
20	(a) $x = 2, y = 5$ (b) $x = 5, y = 2$ (c) $x = 6, y = 0$ (d) $x = 2, y = 8$					
	In the given figure, $\angle ABC = 90^{\circ}$ and $BD \perp AC$. If $BD = AC$.	1				
	8 cm and $AD = 4$ cm, then the value of CD is (a) 8 cm					
	(b) 12 cm					
	(c) 14 cm (d) 16 cn					
	В					
21	The point on $y - axis$ which is equidistant From the point $P(6,5)$ and $Q(-4,3)$ is:	4				
	(a) $(0,9)$ (b) $(9,0)$ (c) $(-9,0)$ (d) $(0,-9)$	<u>1</u>				
	If $2\cos 3\theta = 1$, $0^{\circ} < \theta < 90^{\circ}$, then the value of θ is:	1				
	(a) 10° (b) 30° (c) 20° (d) 15°	<u>1</u>				
	The greatest number that divides 124, 165 and 288 leaving remainder 1 in each case is:	1				
		<u>1</u>				
		4				
34.	In the given figure, $PQ \parallel BC \cdot \frac{AP}{PB} = 4$, then the value of $\frac{AQ}{AC}$ is	<u>1</u>				
	(a) 5 (b) $\frac{4}{5}$					
	5 5					
	(c) 4 $(d)^{\frac{5}{4}}$					
25	APCD is a restangle whose three vertices are 4(0, 2) P(0, 0) and C(E, 0). The length of its	1				
	diagonalia					
	diagonal is (1) 2 and (2) $\sqrt{24}$ and (3) $\sqrt{24}$ and (4) $\sqrt{24}$ and (5) $\sqrt{24}$ and (6) $\sqrt{24}$ and (7) $\sqrt{24}$ and (8) $\sqrt{24}$ and (8					
	(a) 5 units (b) 3 units (c) $\sqrt{34}$ units (d) 4 units					
36.	(a) 5 units (b) 3 units (c) $\sqrt{34}$ units (d) 4 units With the vertices of A,B and C of a triangle ABC as centers,	1				
36.	(a) 5 units (b) 3 units (c) $\sqrt{34}$ units (d) 4 units With the vertices of A,B and C of a triangle ABC as centers, arc are drawn with the radii 5 cm each as shown in Fig.					
36.	(a) 5 units (b) 3 units (c) $\sqrt{34}$ units (d) 4 units With the vertices of A,B and C of a triangle ABC as centers, arc are drawn with the radii 5 cm each as shown in Fig. If $AB = 14cm$, $BC = 48$ cm and $CA = 50$ cm, then find the					
36.	(a) 5 units (b) 3 units (c) $\sqrt{34}$ units (d) 4 units With the vertices of A,B and C of a triangle ABC as centers, arc are drawn with the radii 5 cm each as shown in Fig. If $AB = 14cm$, $BC = 48$ cm and $CA = 50$ cm, then find the area of shaded region. (use 3.14)					
36.	(a) 5 units (b) 3 units (c) $\sqrt{34}$ units (d) 4 units With the vertices of A,B and C of a triangle ABC as centers, arc are drawn with the radii 5 cm each as shown in Fig. If $AB = 14cm$, $BC = 48$ cm and $CA = 50$ cm, then find the					

37.	Find the area of the shaded region in the given figure. (a) $462 cm^2$ (b) $452 cm^2$ (c) $196 cm^2$ (d) $252 cm^2$	1			
38.	If α , β are zeroes of polynomial $ax^2 + bx + c$, then $\alpha - \beta$ is $(a) \frac{b}{a} \qquad (b) \frac{bc}{a} \qquad (c) \frac{\sqrt{b^2 - 4ac}}{a} \qquad (d) \frac{\sqrt{b^2 + 4ac}}{a}$ A circular park is surrounded by a road 21 m wide. If the radius of the park is 105 m, then the	1			
39.	area of the road is (a) $1524.62 cm^2$ (b) $15246 cm^2$ (c) $15640.20 cm^2$ (d) None	1			
40.	A part of monthly expenses of a family is constant and the remaining varies with the price of wheat. When the rate of wheat is Rs. 250 a quintal, the total monthly expenses of the family are Rs. 1000 and when it is Rs. 240 a quintal, the total monthly expenses are Rs. 980. Find the total monthly expenses of the family when the cost of wheat is Rs.350 a quintal. (a) Rs. 1400 (b) Rs. 1200 (c) Rs. 1000 (d) Rs. 800				
	SECTION-C Case study based questions: Section C consists of 10 questions of 1 mark each. Any 8 questions are to be attempted.				
	Case Study:-1 Application of Polynomials-Architectural Structures, Quadratic polynomial can be used to model the shape of many architectural structures in the world. Pershing field of Jersey city in US is one such structure. Based on the above information, answer the following questions.				
41.	If the Arch is represented by $10x^2 - x - 3$, then its zeros are $(a)\frac{1}{2}, -\frac{3}{2}$ $(b)-\frac{1}{2}, \frac{3}{5}$ $(c)-\frac{1}{2}, \frac{1}{3}$ $(d)-\frac{1}{3}, \frac{2}{3}$	1			
42.	The zeros of the polynomial are the point where the graph (a) Intersect the x — axis (b) Intersect the y — axis (c) Intersect the either of the axis (d) Can'say	1			
43.	The quadratic polynomial whose sum of zeros is 0 and product of zeros is 1 given by (a) $x^2 - x$ (b) $x^2 + x$ (c) $x^2 + 1$ (d) $x^2 - 1$	1			
44.	Which of the following has $-\frac{1}{2}$ and 2 as their zeros ? (a) $6x^2 - 4x + 6$ (b) $3x^2 - x + 2$ (c) $2x^2 - 7x + 2$ (d) $2x^2 - 3x - 2$	1			
45.	The product of zeros of the polynomial $\sqrt{3}x^2 - 14x - 8\sqrt{3}$ is (a)4 (b)6 (c)8 (d) 10	1			
	Q46-Q50 are based on Case Study -2				

Case Study:-2 Measuring Fuel output A person is riding his bike on a straight road towards East from his college to city A and then to city B. At some point in between city A and city B, he suddenly realises that there is not enough petrol for the journey. Also, there is no petrol pump on the road between these two cities. (x, 8) City B The value of y is equal to 46. 1 (c) 3 (d) 2 The value of x is equal to 47. 1 (a) 4 (b) 5 (c) 8 (d) 7 If M is the mid point exactly in between city A and B, then the coordinates of M are 48. <u>1</u> (b)(4,4)(c)(5,5)(d)(6,6)The ratio in which A divide the line segment joining the points *O* and *M* is 49. <u>1</u> (b)2:1(c)3:2(d)2:3If the person analyse the petrol at the point M (the mid point of AB), then what should be his decision. 50. 1 (a)Should he travel back to college (b) Should try his luck to move towards city B (c)Should travel back to city A (d) None of these "Don't Cry Because It's Over, Smile Because it Happened" *^*^*^*^*^*^*^*^*^*^*^*^*^*

