CODE:2101- AG-19-23-24

पजियन क्रमांक

REG.NO:-TMC-D/79/89/36

General Instructions:

- 1. This Question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- 4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.
- 5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.
- 6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E

EXAMINATION 2023 -24

Time:	3 Hours Maximum Marks : 8	30
CLAS	S – XII MATHEMATICS	
Sr. No.	SECTION - A	Ma rks
	This section comprises of very short answer type-questions (VSA) of 2 marks each	
Q.1	Given, $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $A^2 = 5A + \lambda I$. Hence, $\lambda = ?$	1
	(a)23 (b)-23 (c) -7 (d) NONE	
Q.2	Which of the following is not true (a) Every skew-symmetric matrix of odd order is non-singular (b) If determinant of a square matrix is non-zero, then it is non singular	1
	(c) Cofactor of symmetric matrix is symmetric(d)Cofactor of a diagonal matrix is diagonal	
Q.3	If $A = \begin{bmatrix} \alpha & 2 \\ 2 & \alpha \end{bmatrix}$ and $ A^3 = 125$, then $\alpha =$	1
	(a) ± 3 (b) ± 2 (c) ± 5 (d) 0	

TMC/D/79/89 1 P.T.O.

	Visit us at www.agyatgupta.com	
Q.4	If $f(x) = \begin{cases} \frac{1 - \cos 4x}{x^2}, & \text{when } x < 0 \\ a, & \text{when } x = 0 \\ \frac{\sqrt{x}}{\sqrt{(16 + \sqrt{x})} - 4}, & \text{when } x > 0 \end{cases}$, is continuous at $x = 0$, then the value of 'a' will be $(a) \qquad 8 (b) -8 (c) 4 \qquad (d) \text{None of these}$	1
Q.5	If θ be the angle between the unit vectors \mathbf{a} and \mathbf{b} , then $\mathbf{a} - \sqrt{2} \mathbf{b}$ will be a unit vector if $\theta =$ (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{2\pi}{3}$	1
Q.6	Solution of $ydx - xdy = x^2ydx$ is (a) $ye^{x^2} = cx^2$ (b) $ye^{-x^2} = cx^2$ (c) $y^2e^{x^2} = cx^2$ (d) $y^2e^{-x^2} = cx^2$	1
Q.7	For the following shaded area, the linear constraints except $x \ge 0$ and $y \ge 0$, are $ \begin{array}{cccccccccccccccccccccccccccccccccc$	1
Q.8	If vector $\mathbf{a} = 2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k}$ and vector $\mathbf{b} = -2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$, then $\frac{\text{Projection of vector } \mathbf{a} \text{ on vector } \mathbf{b}}{\text{Projection of vector } \mathbf{b} \text{ on vector } \mathbf{a}} =$ (a) $\frac{3}{7}$ (b) $\frac{7}{3}$ (c) 3 (d) 7	1
Q.9	$\int_{-1}^{1} \frac{x^3 + x + 1}{x^2 + 2 x + 1} dx =$ (a) log 2 (b) 2log 2 (c) - log 2 (d) none of these	1

TMC/D/79/89 P.T.O.

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office: 89-Laxmi bai colony Ph.: 4063585(O), 7000636110(O) Mobile: 9425109601(P)

	visit us at www.agyatgupta.com	
Q.10	If $A = \begin{vmatrix} -1 & 2 & 4 \\ 3 & 1 & 0 \\ -2 & 4 & 2 \end{vmatrix}$ and $B = \begin{vmatrix} -2 & 4 & 2 \\ 6 & 2 & 0 \\ -2 & 4 & 8 \end{vmatrix}$, then B is given by	1
	$\begin{vmatrix} -2 & 4 & 2 \end{vmatrix} $	
Q.11	Two tailors A and B earn Rs. 15 and Rs. 20 per day respectively A can make 6 shirts and 4 pants in a day while B can make 10 shirts and 3 pants. To spend minimum on 60 shirts and 40 pants, A and B work x and y days respectively. Then linear constraints except $x \ge 0$, $y \ge 0$, are (a) $15 \times 40y \ge 0.60 \times 40y \ge 0$ (b) $15 \times 40y \ge 0.6x + 10y = 10$	1
	(c) $6x + 10y \ge 60,4x + 3y \ge 40$ (d) $6x + 10y \le 60,4x + 3y \le 40$	
Q.12	If $ \mathbf{a} = \mathbf{b} = 1$ and $ \mathbf{a} + \mathbf{b} = \sqrt{3}$, then the value of $(3\mathbf{a} - 4\mathbf{b}).(2\mathbf{a} + 5\mathbf{b})$ is	1
	(a) -21 (b) -21/2(c) 21 (d) 21/2	
Q.13	If I is a unit matrix of order 10, then the determinant of I is equal to (a) 10 (b) 1 (c) 1/10 (d) 9	1
Q.14	Three coins are tossed. If one of them shows tail, then the probability that all three coins show tail, is (a) $\frac{1}{7}$ (b) $\frac{1}{8}$ (c) $\frac{2}{7}$ (d) $\frac{1}{6}$	1
Q.15	Integrating factor of $\frac{dy}{dx} + \frac{y}{x} = x^3 - 3$ is	1
	(a) x (b) $\log x$ (c) $-x$ (d) e^x	
Q.16	The function $f: R \to R$, $f(x) = x^2$, $\forall x \in R$ is (a) Injection but not surjection (b)Surjection but not injection (c) Injection as well as surjection (d) Neither injection nor surjection	1
Q.17	If $f(x) = \begin{cases} x + \lambda, & x < 3 \\ 4, & x = 3 \\ 3x - 5, & x > 3 \end{cases}$ is continuous at $x = 3$, then $\lambda = (a) + (b) + (b) + (b) + (c) + (c)$	1
Q.18	If a line makes angles of 30° and 45° with x-axis and by it with z -axis is	1
	(a) 45° (b) 60° (c) 120° (d) None of these	
	ASSERTION-REASON BASED QUESTIONS In the following questions, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices. (a) Both A and R are true and R is the correct explanation of A. (b) Both A and R are true but R is not the correct explanation of A. (c) A is true but R is false. (d) A is false but R is	

TMC/D/79/89 P.T.O.

	_
true.	
Assertion (A): The point of the function $(x-1)(x-2)^2$ at its maxima is $\frac{4}{3}$.	1
Reason (R): $f'(c)$ changes sign from positive to negative as x increases through c then the function attains a local maximum at $x = c$.	
Assertion (A): If $(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = 225 \& \vec{a} = 5$ then the value of $ \vec{b} = 3$	1
Reason (R): $ \vec{a} \times \vec{b} ^2 + (\vec{a} \cdot \vec{b})^2 = \vec{a} ^2 \vec{b} ^2$	
SECTION - B	
This section comprises of very short answer type-questions (VSA) of 2 marks each	
Find the intervals in which the function f given by $f(x) = x^3 + \frac{1}{x^3}, x \ne 0$ is (i)	2
Prove that: $\tan^{-1} \left[\frac{\sqrt{1 + x^2 + \sqrt{1 - x^2}}}{\sqrt{1 + x^2 - \sqrt{1 - x^2}}} \right] = \frac{\pi}{4} + \frac{1}{2} \cos^{-1} x^2.$	2
OR	
Write $\tan^{-1} \left[\frac{\sqrt{1 + \cos x} + \sqrt{1 - \cos x}}{\sqrt{1 + \cos x} - \sqrt{1 - \cos x}} \right]$, $x \in \left(\pi, \frac{3\pi}{2} \right)$ in the simplest form.	
For any vectors \vec{a} , show that $ \vec{a} \times \vec{i} ^2 + \vec{a} \times \vec{j} ^2 + \vec{a} \times \vec{k} ^2 = 2 \vec{a} ^2$	2
Find the maximum slope of the curve $y = -x^3 + 3x^2 + 2x - 27$. OR	2
Separate the interval $[0, \frac{\pi}{2}]$ into sub intervals in which $f(x) = \sin^4 x + \cos^4 x$ is	
increasing or decreasing.	
A man 2 metres high walks at a uniform speed of 5 km/hr away from a lamp - post 6 metres high. Find the rate at which the length of his shadow increases.	2
SECTION - C	
(This section comprises of short answer type questions (SA) of 3 marks each)	
Evaluate: $\int \frac{1}{\sin x - \sin 2x} dx$.	3
$\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \int_{$	3
Evaluate: $\int \frac{x^2}{x^4 + x^2 + 16} dx.$	
	Assertion (A): The point of the function $(x-1)(x-2)^2$ at its maxima is $\frac{4}{3}$. Reason (R): $f'(c)$ changes sign from positive to negative as x increases through c then the function attains a local maximum at $x = c$. Assertion (A): If $(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = 225 \& \vec{a} = 5$ then the value of $ \vec{b} = 3$ Reason (R): $ \vec{a} \times \vec{b} ^2 + (\vec{a} \cdot \vec{b})^2 = \vec{a} ^2 \vec{b} ^2$ SECTION – B This section comprises of very short answer type-questions (VSA) of 2 marks each Find the intervals in which the function f given by $f(x) = x^3 + \frac{1}{x^3}, x \neq 0$ is (i) increasing (ii) decreasing. Prove that: $\tan^{-1}\left[\frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1+x^2} - \sqrt{1-x^2}}\right] = \frac{\pi}{4} + \frac{1}{2}\cos^{-1}x^2$. OR Write $\tan^{-1}\left[\frac{\sqrt{1+\cos x} + \sqrt{1-\cos x}}{\sqrt{1+\cos x} - \sqrt{1-\cos x}}\right], x \in \left(\pi, \frac{3\pi}{2}\right)$ in the simplest form. For any vectors \vec{a} , show that $ \vec{a} \times t ^2 + \vec{a} \times f ^2 + \vec{a} \times k ^2 = 2 \vec{a} ^2$ Find the maximum slope of the curve $y = -x^3 + 3x^2 + 2x - 27$. OR Separate the interval $[0, \frac{\pi}{2}]$ into sub intervals in which $f(x) = \sin^4 x + \cos^4 x$ is increasing or decreasing. A man 2 metres high walks at a uniform speed of 5 km/hr away from a lamp - post 6 metres high. Find the rate at which the length of his shadow increases. SECTION – C (This section comprises of short answer type questions (SA) of 3 marks each)

TMC/D/79/89 P.T.O.

	visit us at www.agyatgupta.com	1
	Evaluate: $\int_{-1}^{\frac{1}{2}} x \cos(\pi x) dx$.	
Q.28	The ratio of the number of boys to the number of girls in a class is 1:2. It is known that the probabilities of a girl and boy getting a first division are .25 and .28 respectively. Find the probability that a student chosen at random will get first division. OR	3
	From a set of 100 cards numbered 1 to 100, one card is drawn at random. Find the probability that the number on the card is divisible by 6 or 8, but not by 24.	
Q.29	Solve the differential equation $(x^2 - yx^2)dy + (x^2y^2 + y^2)dx = 0$ given that $y = 1$	3
	when $x = 1$.	
	OR	
	Prove that $x^2 - y^2 = c(x^2 + y^2)^2$ is the general solution of the differential equation $(x^3 - 3xy^2)dx = c(y^3 - 3x^2y)dy$ where c is a parameter.	
Q.30	If $x\sqrt{(1+y)} + y\sqrt{(1+x)} = 0$ then $\frac{dy}{dx} = -\frac{1}{(1+x)^2}$.	3
Q.31	Solve the following linear programming problem (L.P.P) graphically. Maximize $Z = x + 2y$ subject to constraints; $x + 2y \ge 100 \ 2x - y \le 0 \ 2x + y \le 200 \ x, \ y \ge 0$.	3
	SECTION - D	
	(This section comprises of long answer-type questions (LA) of 5 marks each)	
Q.32	Determine the equation of the line passing through the point $(1, 2, -4)$ and perpendicular to the two lines $\frac{x-8}{3} = \frac{y+9}{-16} = \frac{z-10}{7}$ and $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$.	5
	OR	
	Find the equations of the line which intersects the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} & \frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$	
	and passes through the point $(1, 1, 1)$.	
Q.33	Using integration, find the area of the triangle bounded by the lines $11 = 7x - 2y$, $19 = 3x + 2y$ and $x - y = 3$.	5
Q.34	Check whether the relation R on R defined as $R = \{(a, b): a \le b^3\}$ is reflexive, symmetric or transitive.	5
	OR	
	Prove that the function $f:[0,\infty) \to R$ Given by $f(x) = 9x^2 + 6x - 5$ is not	
	invertible. Modify the co-domain of the function f to make it invertible, and hence find f ⁻¹ .	
Q.35	If A and B are two independent events such that $P(A \cap B) = \frac{1}{6}$ and $P(\overline{A} \cap \overline{B}) = \frac{1}{3}$, find	5
	P(A)&P(B).	

TMC/D/79/89 5 P.T.O.

	Visit us at www.agyatgupta.com	
	SECTION - E	
	(This section comprises of 3 case study / passage – based questions of 4 marks each with two sub parts (i),(ii),(iii) of marks 1, 1, 2 respectively. The third case study question has two sub – parts of 2 marks each.)	
Q.36	Case Study based-1	
	If there is a statement involving the natural number <i>n</i> such that (i) The statement is true for <i>n</i> = 1	
	(ii) When the statement is true for $n=k$ (where k is some positive integer), then the statement is also true for $n=k+1$.	
	Then, the statement is true for all natural numbers n . Also, if A is a square matrix of order n , then A^2 is defined as AA . In general, $A^m = AA A(m \text{ times})$, where m is any positive integer.	
	Based on the above information, answer the following questions.	
i.	If $A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$, then for any positive integer n ,	1
	(a) $A^n = \begin{bmatrix} 3n & -4n \\ n & -n \end{bmatrix}$ (b) $A^n = \begin{bmatrix} 1+2n & -4n \\ n & 1-2n \end{bmatrix}$ (c) $A^n = \begin{bmatrix} 3n & -8n \\ 1 & -n \end{bmatrix}$ (d) $A^n = \begin{bmatrix} 1+3n & -4n \\ n & 1-3n \end{bmatrix}$	
ii.	If $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$, then A^n , where $n \in N$, is equal to	1
	(a) 2^n (b) 3^n (c) n (d) 1	
iii.	If $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then which of the following holds for all natural numbers	2
	$n \ge 1$? (a) $A^n = nA - (n-1)I$ (b) $A^n = 2^{n-1}A - (n-1)I$	
	(c) $A^n = nA + (n-1)I$ (d) $A^n = 2^{n-1}A + (n-1)I$	
	OR	
	Let $A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$ and $A^n = \begin{bmatrix} a_{ij} \end{bmatrix}_{3\times 3}$ for some positive integer n , then the cofactor of a_{13}	
	is	
	(a) a^n (b) $-a^n$ (c) $2a^n$ (d) 0	
Q.37	Case Study based-3	
	A gardener wants to construct a rectangular bed of garden in a circular patch of land. He takes the maximum perimeter of the rectangular region as possible. (Refer to the images given below for calculations)	

TMC/D/79/89 P.T.O.

	Visit us at www.agyatgupta.com	
	D 2Y a O B	
i.	The perimeter of rectangle <i>P</i> is:	1
	a. $4x + 4\sqrt{a^2 - x^2}$ b. $x + \sqrt{a^2 - x^2}$ c. $4x + \sqrt{a^2 - x^2}$ d. $x + 4\sqrt{a^2 - x^2}$	
ii.	To find the critical points put	1
	a. $\frac{dP}{dx} > 0$ b. $\frac{dP}{dx} < 0$ c. $\frac{dP}{dx} = 0$ d. None of these	
iii.	Value of y is	2
	$a.\frac{a}{2}$ $b.\frac{a}{\sqrt{2}}$ c.2a $d.\sqrt{2}a$	
	OR	
	If a rectangle of the maximum perimeter which can be inscribed in a circle of radius 10 cm is square then the sides of the region	
	a. $10\sqrt{8}$ cm b. $2\sqrt{10}$ cm c. $20\sqrt{2}$ cm d. $10\sqrt{2}$ cm	
Q.38	Case Study based-3	
	From the point (2, 4, -1) to the line $\frac{x+5}{1} = \frac{y+3}{4} = \frac{z-6}{-9}$.	
i.	Find the equation of the perpendicular from the point on the line the length of perpendicular.	2
ii.	The length of perpendicular.	2
	"अवसर की प्रतीक्षा में मत बैठो । आज का अवसर ही सर्वोत्तम है ।"	