Jhe Excellence Key...

(M.Sc, B.Ed., M.Phill, P.hd)

CODE:2801-AG-21-23-24

RGET MATHEM

पजियन क्रमांक

General Instructions:

1. This Question paper contains - five sections A, B, C, D and E. Each section is

compulsory. However, there are internal choices in some questions.

2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.

3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.

4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.

5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.

6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2

Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E

EXAMINATION 2023 -24

Time :	3 Hours		Maximum Marks : 80	0
CLASS – XII CBSE		MATHEMATIC	CS	
Sr. No.		SECTION - A		Ma rks
	This section comprises of very s each	short answer type-question	ons (VSA) of 2 marks	
Q.1	1 If $X_{m\times 4}Y_{p\times 4} = Z_{5\times b}$, for three matrices X,Y,Z, find the values of m, p and b. (A) $m = 4, p = 5, b = 4$ (B) $m = 4, p = 4, b = 5$ (C) $m = 5, p = 4, b = 4$ (D) NONE			
Q.2				1
	The value of a , b , c when the matr	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	v symmetric matrix	
(A) 1,-2, -1(B)-1, 2, 1 (C) -1,2,-1(D) NONE OF THESE				

TMC/D/79/89

Visit us at www.agyatgupta.com

	visit us at www.agyatgupta.com	
Q.3	The matrix $\begin{bmatrix} 2 & \lambda & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ is non singular, if	1
	$\begin{bmatrix} 1 & -2 & -3 \end{bmatrix}$	
	(a) $\lambda \neq -2$ (b) $\lambda \neq 2$ (c) $\lambda \neq 3$ (d) $\lambda \neq -3$	
Q.4	(a) $\lambda \neq -2$ (b) $\lambda \neq 2$ (c) $\lambda \neq 3$ (d) $\lambda \neq -3$ For what value of λ the function defined by $f(x) = \begin{cases} \lambda(x^2 + 2), & \text{if } x \leq 0 \\ 4x + 6, & \text{if } x > 0 \end{cases}$	1
	is continuous at $x = 0$	
	(a)-2 (b) 3 (c) -3 (d) 2	
Q.5	If $ \mathbf{a} = 3$, $ \mathbf{b} = 4$ then a value of λ for which $\mathbf{a} + \lambda \mathbf{b}$ is perpendicular to $\mathbf{a} - \lambda \mathbf{b}$ is	1
	(a) $\frac{9}{16}$ (b) $\frac{3}{4}$ (c) $\frac{3}{2}$ (d) $\frac{4}{3}$	
Q.6	The solution of $(x\sqrt{1+y^2})dx + (y\sqrt{1+x^2})dy = 0$ is	1
	(a) $\sqrt{1+x^2} + \sqrt{1+y^2} = c$ (b) $\sqrt{1+x^2} - \sqrt{1+y^2} = c$	
	(c) $(1+x^2)^{3/2} + (1+y^2)^{3/2} = c$ (d)None of these	
Q.7	A shopkeeper wants to purchase two articles A and B of cost price Rs. 4 and Rs. 3 respectively. He thought that he may earn 30 paise by selling article A and 10 paise by selling article B He has not to purchase total articles of more than Rs. 24. If he purchases the number of articles of A and B, x and y respectively, then linear constraints are	1
	(a) $x \ge 0, y \ge 0, 4x + 3y \le 24$ (b) $x \ge 0, y \ge 0, 30x + 10y \le 24$	
	(c) $x \ge 0, y \ge 0, 4x + 3y \ge 24$ (d) $x \ge 0, y \ge 0, 30x + 40y \ge 24$	
Q.8	Direction ratios of the line represented by the equation $x = ay + b$, $z = cy + d$ are	1
1	(a) $(a, 1, c)$ (b) $(a, b - d, c)(c)(c, 1, a)$ (d) (b, ac, d)	
Q.9	If $\int_{0}^{k} \frac{dx}{2+8x^{2}} = \frac{\pi}{16}$, then $k =$ (a) 1 (b) $\frac{1}{2}$ (c) $\frac{1}{4}$ (d)None of these	1
Q.10	If $\Delta = \begin{vmatrix} a & b & c \\ x & y & z \\ p & q & r \end{vmatrix}$, then $\begin{vmatrix} ka & kb & kc \\ kx & ky & kz \\ kp & kq & kr \end{vmatrix} =$	1
	(a) Δ (b) $k\Delta$ (c) $3k\Delta$ (d) $k^3\Delta$	
Q.11	The minimum value of the objective function $Z = 2x + 10y$ for linear constraints $x - y \ge 0$, $x - 5y \le -5$ and $x, y \ge 0$ is (a) 10 (b) 15 (c) 12 (d) 8	1
Q.12	If $ \mathbf{a} = 2$, $ \mathbf{b} = 5$ and $ \vec{\mathbf{a}} \times \vec{b} = 8$, then $\vec{\mathbf{a}} \cdot \vec{b}$ is equal to	1
	(a) 0 (b) 2 (c) 4 (d) 6	
TMC/I	D/79/89 2 P.T.O. Target Mathematics by- Dr.Agyat Gupta	

(a) $3 A $ Q.14Two cards an cards then the (a) $1/13$ (b)Q.15The order an are respective (a) $3, 2$ Q.16 $\vec{\mathbf{a}} \times \vec{\mathbf{i}} ^2 + \vec{\mathbf{a}} \times \vec{\mathbf{a}} ^2$ Q.16 $\vec{\mathbf{a}} \times \vec{\mathbf{i}} ^2 + \vec{\mathbf{a}} \times \vec{\mathbf{a}} ^2$ Q.17 $f(x) = \begin{cases} (1 - a) \\ (a) f(x) \text{ is correct (b) } f(x) \text{ is difted (c) } f(x) \text{ is correct (c) } f(x) is c$	$(b)2, 1(c) 2, 2 (d) 2, 3$ $(c) a ^{2} + a $	1 1 1 1
Q.14Two cards as cards then the (a) 1/13 (b)Q.15The order and are respective (a) 3, 2Q.16 $\vec{\mathbf{a}} \times \vec{\mathbf{i}} ^2 + \vec{\mathbf{a}} \times \vec{\mathbf{a}} ^2$ Q.16 $\vec{\mathbf{a}} \times \vec{\mathbf{i}} ^2 + \vec{\mathbf{a}} \times \vec{\mathbf{a}} ^2$ Q.17 $f(x) = \begin{cases} (1 - \vec{\mathbf{a}}) & (1 - \vec{\mathbf{a}}) \\ (\mathbf{a}) & f(x) & (1 - \vec{\mathbf{a})} \\$	The drawn successively with replacement from a well shuffled deck of 52 the mean of the number of aces is $(3)^{3/13(c)^{2/13(d)}None of these$ d degree of the differential equation $x \left(\frac{dy}{dx}\right)^3 + 2\left(\frac{d^2y}{dx^2}\right)^2 + 3y + x = 0$ ely (b)2, 1(c) 2, 2 (d) 2, 3 $(j)^2 + \vec{a} \times k ^2 =$ (b) $2 \vec{a} ^2$ (c) $3 \vec{a} ^2$ (d) $4 \vec{a} ^2$ 1-x $x < 1(-x)(2-x) 1 \le x \le 2 at x = 1 & x = 2. Which of these is true?3-x$ $x > 2thinuous at x = 1 and discontinuous at x = 2fferentiable at x = 1 but f(x) is not differentiable at x = 1$	1
Q.15 Q.15 Q.15 The order and are respective (a) 3, 2 Q.16 $\overrightarrow{ \mathbf{a}\times\mathbf{i} ^2 + \mathbf{a}\times\mathbf{i} ^2}$ (a) $\overrightarrow{ \mathbf{a} ^2}$ Q.17 $f(x) = \begin{cases} (1 - \mathbf{a}) \\ (\mathbf{a}) $	e mean of the number of aces is $\frac{3}{3}(2)^{2}(3)(3)(3)(2)(2)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)$	1
The order an are respective (a) 3, 2 Q.16 $ \vec{\mathbf{a}} \times \vec{\mathbf{i}} ^2 + \vec{\mathbf{a}} \times \vec{\mathbf{a}} ^2$ Q.17 Q.17 $f(x) = \begin{cases} (1 - \vec{\mathbf{a}}) \\ (\mathbf{a}) \\ (\mathbf$	ely (b)2, 1(c) 2, 2 (d) 2, 3 $\langle \mathbf{j} ^2 + \mathbf{a} \times \mathbf{k} ^2 =$ (b) $2 \mathbf{a} ^2$ (c) $3 \mathbf{a} ^2$ (d) $4 \mathbf{a} ^2$ 1-x $x < 1(-x)(2-x) 1 \le x \le 2 at x = 1 & x = 2. Which of these is true?3-x$ $x > 2thinuous at x = 1 and discontinuous at x = 2fibrentiable at x = 1 but f(x) is not differentiable at x = 2ntinuous at x = 1 and f(x) is differentiable at x = 1$	1
(a) 3, 2 Q.16 $ \vec{a} \times \vec{i} ^2 + \vec{a} \times \vec{a} ^2$ (a) $ \vec{a} ^2$ Q.17 $f(x) = \begin{cases} (1 - i) \\ (a)f(x) \text{ is constrained} \\ (c) f(x) \text{ is constrained} \\ (d) \text{ all three} \end{cases}$	$(b)2, 1(c) 2, 2 (d) 2, 3$ $(c) a ^{2} + a $	
Q.17 Q.17 $f(x) = \begin{cases} 1 - \frac{1}{2} \\ f(x) = \begin{cases} 1 - \frac{1}{2} \\ 1 - \frac{1}{2} \\ (a)f(x) \text{ is conduct} \\ (b) f(x) \text{ is conduct} \\ (c) f(x) \text{ is conduct} \\ (d) \text{ all three} \end{cases}$	$\begin{array}{cccc} 3 & \vec{a} ^2 & 3 & \vec{a} ^2 & 4 & \vec{a} ^2 \\ \hline 1-x & x < 1 & & \\ -x)(2-x) & 1 \le x \le 2 & \text{at } x = 1 & x = 2 & \text{. Which of these is true?} \\ 3-x & x > 2 & & \\ \hline \text{finuous at } x = 1 & \text{and discontinuous at } x = 2 & \\ \hline \text{fferentiable at } x = 1 & \text{but } f(x) & \text{is not differentiable at } x = 2 & \\ \hline \text{ntinuous at } x = 1 & \text{and } f(x) & \text{is differentiable at } x = 1 & \\ \hline \text{finuous at } x = 1 & \text{and } f(x) & \text{is differentiable at } x = 1 & \\ \hline \text{finuous at } x = 1 & \text{and } f(x) & \text{is differentiable at } x = 1 & \\ \hline \text{finuous } x = 1 & \text{and } f(x) & \text{is differentiable at } x = 1 & \\ \hline \text{finuous } x = 1 & \text{and } f(x) & \text{is differentiable at } x = 1 & \\ \hline \text{finuous } x = 1 & \text{and } f(x) & \text{is differentiable at } x = 1 & \\ \hline \text{finuous } x = 1 & \text{and } f(x) & \text{is differentiable at } x = 1 & \\ \hline \text{finuous } x = 1 & \text{and } f(x) & \text{is differentiable at } x = 1 & \\ \hline \text{finuous } x = 1 & \text{and } f(x) & \text{is differentiable } x = 1 & \\ \hline \text{finuous } x = 1 & \text{and } f(x) & \text{is differentiable } x = 1 & \\ \hline \text{finuous } x = 1 & \text{and } f(x) & \text{is differentiable } x = 1 & \\ \hline \text{finuous } x = 1 & \text{and } f(x) & \text{is differentiable } x = 1 & \\ \hline \text{finuous } x = 1 & \text{and } f(x) & \text{is differentiable } x = 1 & \\ \hline \text{finuous } x = 1 & \text{and } f(x) & \text{is differentiable } x = 1 & \\ \hline \text{finuous } x = 1 & \text{and } f(x) & \text{is differentiable } x = 1 & \\ \hline \text{finuous } x = 1 & \text{finuous } x = 1 & \\ \hline \text{finuous } x = 1 & \text{finuous } x = 1 & \\ \hline \text{finuous } x = 1 & \\ \hline \text{finuous } x = 1 & \text{finuous } x = 1 & \\ \hline \text$	
Q.17 $f(x) = \begin{cases} (1 - \frac{1}{2}) \\ (a)f(x) & \text{is cond} \\ (b) f(x) & \text{is dift} \\ (c) f(x) & \text{is cond} \\ (d) & \text{all three} \end{cases}$	$\begin{array}{ll} 1-x & x < 1 \\ -x)(2-x) & 1 \le x \le 2 \\ 3-x & x > 2 \end{array} \text{at } x = 1 \ \& \ x = 2 \ . \text{ Which of these is true}? \\ \end{array}$	1
(a) f(x) is cor (b) f(x) is dit (c) f(x) is cor (d) all thre	ntinuous at $x = 1$ and discontinuous at $x = 2$ fferentiable at $x = 1$ but $f(x)$ is not differentiable at $x = 2$ ntinuous at $x = 1$ and $f(x)$ is differentiable at $x = 1$	1
(a) f(x) is cor (b) f(x) is dit (c) f(x) is cor (d) all thre	ntinuous at $x = 1$ and discontinuous at $x = 2$ fferentiable at $x = 1$ but $f(x)$ is not differentiable at $x = 2$ ntinuous at $x = 1$ and $f(x)$ is differentiable at $x = 1$	
Q.18 If the co-ordi	c	
	nates of the points A, B, C, D be $(1, 2, 3)$, $(4, 5, 7), (-4, 3, -6)$ and $(2, $ vely, then the angle between the lines AB and CD is	1
(a) $\frac{\pi}{6}$ (b)	$\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) None of these	
In the follow Reason (R).	ON-REASON BASED QUESTIONS ring questions, a statement of assertion (A) is followed by a statement of Choose the correct answer out of the following choices. (a) Both A and and R is the correct explanation of A. (b) Both A and R are true but R is	
	ect explanation of A. (c) A is true but R is false. (d) A is false but R is	
Reason (A): The function $f(x) \tan x - x$ always increases . R): The value(s) of x for which $f'(x) > 0$, $f(x)$ is increasing; and the for which $f'(x) < 0$, $f(x)$ is decreasing.	1
Q.20 Assertion	(A) : For real function of x , range of the $\frac{1}{2-\sin 3x}$ is $\frac{1}{3} \le y \le 1$.	1
	range of sin x $[-1,1]$.	

TMC/D/79/89

Visit us at www.agyatgupta.com

	SECTION – B	
	This section comprises of very short answer type-questions (VSA) of 2 marks	
	each	
Q.21	Find the intervals in which the function $f(x) = \sin\left(2x + \frac{\pi}{4}\right), 0 \le x \le 2\pi$ is (a)	2
	increasing (b) decreasing.	
Q.22	Prove : $\tan^{-1}\left(\frac{6x-8x^3}{1-12x^2}\right) - \tan^{-1}\left(\frac{4x}{1-4x^2}\right) = \tan^{-1}(2x).$	2
	OR	
	Prove the following : $\sin \left[\tan^{-1} \left(\frac{1 - x^2}{2x} \right) + \cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) \right] = 1, 0 < x < 1.$	
Q.23	Find λ when the scalar projection of $\vec{a} = \lambda \hat{i} + \hat{j} + 4\hat{k}$ on $\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$ is 4 units.	2
Q.24	Find the interval in which the functions $f(x) = -3\log(1+x) + 4\log(2+x) - \frac{4}{2+x}$ is strictly decreasing.	2
	OR	
	Find the point when $f(x) = \sec x + \log(\cos^2 x)$, $0 < x < 2\pi$ is maximum or minimum also find maximum and minimumvalue.	
Q.25	A stone is dropped into a quiet lake and waves move in circles at a speed of 4cm per second. At the instant, when the radius of the circular wave is 10 cm, how fast is the enclosed area increasing	2
	SECTION - C	
	(This section comprises of short answer type questions (SA) of 3 marks each)	
Q.26	If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitudes, show that the vector	3
	$\vec{a} + \vec{b} + \vec{c}$ is equally inclined to \vec{a}, \vec{b} and \vec{c} . Also, find the angle which $\vec{a} + \vec{b} + \vec{c}$ makes with \vec{a} or \vec{b} or \vec{c} .	
		2
Q.27		3
Q.27	Evaluate: $\int \frac{dx}{x[(\log x)^2 + 4\log x - 1]}.$	3
Q.27	Evaluate: $\int \frac{dx}{x[(\log x)^2 + 4\log x - 1]}.$	3
Q.27		3
Q.27 Q.28	OR Evaluate : $\int_{-2}^{2} \frac{x^2}{1+5^x} dx$ A and B take turn in throwing two dices. The first to throw 9 being awarded. Show that if A has the first throw, their chances of winning are in the ratio 9:8.	3
	OR Evaluate : $\int_{-2}^{2} \frac{x^2}{1+5^x} dx$ A and B take turn in throwing two dices. The first to throw 9 being awarded. Show	

	A, B & C a majority speaks truth ?	
Q.29	Show that the solution of differential equation : $y = 2(x^2 - 1) + ce^{-x^2}$ is $\frac{dy}{dx} + 2xy - 4x^3 = 0$.	3
	OR	
	The equation of the curve passing through the origin and satisfying the equation $(1+x^2)\frac{dy}{dx} + 2xy = 4x^2$.	
Q.30	If $\sin y = x \sin(a + y)$, prove that $\frac{dy}{dx} = \frac{\sin^2(a + y)}{\sin a}$.	3
Q.31	Maximize $z = 6x + 3y$ subject to the constraints, $3x + 2y \le 150$; $x + 5y \ge 115$; $4x + y \ge 80$; $x, y \ge 0$.	3
	SECTION - D	
	(This section comprises of long answer-type questions (LA) of 5 marks each)	
Q.32	A line with direction numbers <2, 7, -5> is drawn to intersect the lines $\frac{x-5}{3} = \frac{y-7}{-1} = \frac{z+2}{1}$	5
	and $\frac{x+3}{-3} = \frac{y-3}{2} = \frac{z-6}{4}$. Find the co –ordinates of the points of intersection and the length	
	intercepted on it.	
	OR $r = 1$ $r = 2$ $r = 3$ 1 $r = 2$ $r = 4$ $r = 5$ A1	
	Find the shortest between the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$. Also	
<u> </u>	find the equation of this line (S.D.).	
Q.33	Using integration, find the area lying above x-axis and included between the circle $x^2 + y^2 = 8x$ and interior of the parabola $y^2 = 4x$.	5
Q.34	Let A = {1, 2, 3 9} and R be the relation in $A \times A$ defined by (a, b) R(c, d) if a + d = b + c for (a, b), (c, d) $\in A \times A$. Prove that R is an equivalence relation and also obtain the equivalence class [(2, 5)]. OR	5
	Consider $f: R_+ \to [-9,\infty)$ given by $f(x) = 5x^2 + 6x - 9$. Show that f is invertible	
	with $f^{-1}(y) = \left[\frac{\sqrt{5y+54}-3}{5}\right]$.	
Q.35	Evaluate : $\int \sqrt{\left(\frac{1-\sqrt{x}}{1+\sqrt{x}}\right)} dx$.	5
	SECTION - E	
	(This section comprises of 3 case study / passage – based questions of 4 marks each with two sub parts (i),(ii),(iii) of marks 1, 1, 2 respectively. The third case study question has two sub – parts of 2 marks each.)	
Q.36	Case Study based-3	

Visit us at www.agyatgupta.com

			ww.agyatgupta.coi		
	magazine by a sch administration. Foll by school administr Printing Area x The total area of the	ool of the same lowing is the pic ation. e page is 150 cm	locality. He shows v torial description for	ulk order for printing of a variety of pages to school a particular page, selected th of the margin at the top on given above, answer the	
	following			<i>6</i>	
•	The relation betwee (a) $(x - 3)y = 150$ (b)		n by (y - 2) =150 (d) (x - 2)	(y - 3) = 150	1
i.	For what value of 'x', the printable area of the page is maximum? (a) 15 cm (b) 10 cm (c) 12 cm (d) 15 units			1	
ii.	The area of the prin (a) $156 + 2x + \frac{450}{x}$	table region of th (b) $156 - 2x + 3\left(\frac{1}{x}\right)$	e page, in terms of x, $\frac{50}{x}$ (c) $156 - 2x - 15\left(\frac{3}{x}\right)$ OR	is (d) $156 - 2x + -3\left(\frac{150}{x}\right)$	2
	(a) Length = 1 cm ,	width $=15 \text{ cm}$ (b)	ge so that it has maxin) Length =15 cm, widt) Length 150 cm, widt		
Q.3 7		Case	Study based-2		
	victims in some states organize a fair for colle students to make hand	hi state, the Depart of India. Authoritie ecting money for he made fans, mats and	ment of Education (DOE s of three private schools elping the flood victims.	2) issues a notice to help flood namely A, B and C decided to These schools encouraged their terials. The students sold these each respectively.	
	The number of articles	sold are given as			
	School / Article	A	В	С	1
		40	25	35	
	Handmade fans		10	- ^	
		50 20	40 30	50 40	
	victims in some states organize a fair for colle students to make hand handmade fans, mats an	of India. Authoritie ecting money for he made fans, mats and nd plates at a cost of sold are given as	s of three private schools elping the flood victims. 7 I plates from recycled ma f Rs 25, Rs 100 and Rs.50	namely A, B and C decided to These schools encouraged their terials. The students sold these each respectively. C	

	Visit us at www.agyatgupta.com	
i.	What is the total money collected by the school A? (a) Rs.700 (b) Rs.7000 (c) Rs.6125 (d) Rs.7875	1
ii.	What is the total amount of money (in Rs.) collected by schools B and C? (a) Rs 14000 (b) Rs 15725 (c) Rs 21000 (d) Rs 13125	1
iii.	What is the total amount of money (in Rs.) collected by all the three schools A, B and C?(a) Rs 15775 (b) Rs 14000 (c) Rs 21000 (d) Rs 17125	2
	OR	
	 Number of handmade fans made by the students of schools A, B and C are 20, 30 and 40 respectively; and the no. of plates made by the students of schools A, B and C are 40, 25 and 35 respectively. Moreover the no. of mats made by the students of respective schools remains unchanged. Then what is the total money collected by all schools? (a) Rs.21250 (b) Rs.6750 (c) Rs.21000 (d) Rs.7000 	
Q.38	Case Study based-2	
	An insurance company insured 3000 cyclists, 4000 scooter drivers and 5000 car drivers. The probability of an accident involving a cyclists, scooter driver and a car driver are 0.02, 0.03 and 0.04 respectively. One of the insured persons meets with an accident.	
i.	What is the probability that he is a cyclists driver .	2
ii.	What is the probability that he is a car driver.	2
	"शिक्षा कभी भी व्यर्थ नहीं होती भले ही वो किसी भी तरह की ग्रहण की गई हो ।"	