AY OPTICS Abhishek Gupta Engineering Physics, IIT Delhi

MOST IMP MCQs on RAY OPTICS for CBSE | JEE | NEET 2025

- A convex lens of focal length 30 cm produces 5 times magnified real image of an object. What is the object 1. distance? b) 25 cm c) 30 cm
 - a) 36 cm
- Light travels in two media A and B with speeds $1.8 \times 10^8 m s^{-1}$ and $2.4 \times 10^8 m s^{-1}$ respectively. Then the 2. critical angle between them is

d) 150 cm

a) $\sin^{-1}\left(\frac{2}{2}\right)$ c) $\tan^{-1}\left(\frac{2}{2}\right)$ b) $\tan^{-1}\left(\frac{3}{4}\right)$ d) $\sin^{-1}\left(\frac{3}{4}\right)$

We combined a convex lens of focal length f_1 and concave lens of focal lengths f_2 and their combined focal 3. length was F. The combination of these lenses will behave like a concave lens, if d) $f_1 \leq f_2$ b) $f_1 < f_2$ a) $f_1 > f_2$ c) $f_1 = f_2$

An astronomical telescope has an angular magnification of magnitude 5 for distant objects. The separation 4. between the objective and the eye-piece is 36 cm and the final image is formed at infinity. The focal length f_0 of the objective and the focal length f_e of the eye-piece are

a)
$$f_0 = 45 \text{ cm} \text{ and } f_e = -9 \text{ cm}$$

c) $f_0 = 50 \text{ cm} \text{ and } f_e = 10 \text{ cm}$
d) $f_0 = 30 \text{ cm} \text{ and } f_e = 6 \text{ cm}$

A convex lens is placed between object and a screen. The size of object is 3 cm and an image of height 9 cm 5. is obtained on the screen. When the lens is displaced to a new position, what will be the size of image on the screen?

A double convex lens made out of glass (refractive index $\mu = 1.5$) has both radii of curvature of 6. magnitudes 20 cm. Incident light rays parallel to the axis of this lens will converge at a distance d such that

a)
$$d = 10 \text{ cm}$$
 b) $d = \frac{20}{3} \text{ cm}$ c) $d = 40 \text{ cm}$ d) $d = 20 \text{ cm}$

- A beam of monochromatic blue light of wavelength 4200 Å in air travels in water ($\mu = 4/3$). Its 7. wavelength in water will be a) 2800 Å b) 5600 Å c) 3150 Å d) 4000 Å
- Refractive index of a medium is μ . The incidence angle is twice that of refracting angle. The angle of 8. incidence is
 - b) $\sin^{-1}\left(\frac{\mu}{2}\right)$ c) $2\cos^{-1}\left(\frac{\mu}{2}\right)$ a) $\cos^{-1}\left(\frac{\mu}{2}\right)$ d) $\sin^{-1}\mu$
- In an equilateral prism if incident angle is 45° then minimum deviation is 9. a) 30° b) 60° c) 45° d) 90°

10.	An object is placed at a d a) $-20 \ cm$	listance of 10 <i>cm</i> from a co b) 30 <i>cm</i>	onvex lens of power 5 <i>D</i> . Find c) 20 <i>cm</i>	d the position of the image d) −30 <i>cm</i>					
11.	If eye is kept at a depth <i>l</i> circle through which the	h inside water of refractiv outer objects become vis	ve index and viewed outside, sible, will be	then the diameter of the					
	a) $\frac{n}{\sqrt{\mu^2 - 1}}$	b) $\frac{h}{\sqrt{\mu^2 + 1}}$	c) $\frac{2n}{\sqrt{\mu^2 - 1}}$	d) $\frac{h}{\sqrt{\mu^2}}$					
12.	A ray of light passes an e and the latter is equal to	equilateral prism such tha $\frac{3}{4}$ th the angle of prism. T	t an angle of incidence is equ he angle of deviation is	ual to the angle of emergence					
	a) 45°	b) 39°	c) 20°	d) 30°					
13.	What will be the colour of sky as seen from the earth, if there were no atmosphere								
	a) Black	b) Blue	c) Orange	d) Red					
14.	To get three images of a	single object, one should	have two plane mirrors at a	n angel of					
	a) 60°	b) 90°	c) 120°	d) 30°					
15.	A medium shows relation between <i>i</i> and <i>r</i> as shown. If speed of light in the medium is <i>nc</i> then value of <i>n</i> is r_{i}								
	a) 1.5	b) 2	c) 2 ⁻¹	d) $3^{-1/2}$ $\overrightarrow{30^{\circ}}$ $\sin i \rightarrow$					
			C						
16.	How much water should be filled in a container 21 <i>cm</i> in height, so that it appears half filled when viewed from the top of the container (given that $\mu_{co} = 4/3$)								
	a) 8.0 <i>cm</i>	b) 10.5 cm	c) 12.0 <i>cm</i>	d) None of the above					
17.	In a compound microscope, the intermediate image is								
	a) Virtual erect and magc) Real, inverted and mag	nified gnified	b) Real, erect and magnified d) Virtual, erect and reduced						
18.	If the critical angle for to medium is	tal internal reflection fro	m a medium to vacuum is 30	0°, the velocity of light in the					
	a) $3 \times 10^8 m/s$	b) 1.5 × 10 ⁸ <i>m/s</i>	c) $6 \times 10^8 \ m/s$	d) $\sqrt{3} \times 10^8 m/s$					
19.	The focal length of the objective and the eye-piece of a microscope are 4 mm and 25 mm respectively. If the final image is formed at infinity and the length of the tube is 16 cm, then the magnifying power of microscope will be								
	a) —337.5	b) -3.75	c) 3.375	d) 33.75					
20.	A beaker containing a lic liquid	quid appears to be half wh	nen it is actually two third fu	ll. The refractive index of					
	a) 7/6	b) 6/5	c) 3/2	d) 4/3					
21.	The resolving power of a	a telescope depends on							
	a) Focal length of eye len	15	b) Focal length of objective	elens					
	c) Length of the telescop	0e	d) Diameter of the objective lens						

22.	When light travels from one medium to the other of which the refractive index is different, then which of the following will change									
	a) Frequency, wavelengthc) Frequency and velocity	and velocity	b) Frequency and wavelengthd) Wavelength and velocity							
23.	Two thin lenses of focal le a) 4.5 D	ngth 20 cm and 25 cm a b) 18 D	are in contact. The effective power of the combina c) 45 D d) 9 D							
24.	The focal lengths of the ob magnification of the teleso	ojective and the eye pieco cope when final image is	e of telescope are 100 cm and formed at infinity is	d 10 cm respectively. The						
	a) 0.1	b) 10	c) 100	d) ∞						
25.	A ray of light incident nor hypotenuse. The refractiv	ray of light incident normally on one face of a right angled isosceles prism. It them grazes the /potenuse. The refractive index of the material of the prism is								
	a) 1.33	b) 1.414	c) 1.5	d) 1.732						
26.	A triangular prism of glass to one face is totally reflec The index of refraction of	s is shown in the figure. A sted, if $\theta = 45^{\circ}$. glass is	A ray incident normally	45°						
	a) Less than 1.41	b) Equal to 1.41	c) Greater than 1.41	d) None						
27.	The communication using a) Total internal reflection c) Polarization	; optical fibres is based o n	n the principle of b) Brewster angle d) Resonance							
28.	A bi-convex lens made of glass (refractive index 1.5) is put in a liquid of refractive index 1.7. Its focal length will									
	a) Decrease and change si	a como cian								
	c) Decrease and remain o	i the same sign	a) increase and remain of the same sign							
29.	The position of final image formed by the given lens combination from the third lens will be at a distance of $[f_1 = +10 \text{ cm}, f_2 = -10 \text{ cm}, f_3 = +30 \text{ cm}]$									
	a) 15 cm	b) Infinity	⊲ _{30 cm} > ⊲ 5 cm c) 45 cm	→ <mark>≺</mark> 10 cm → d) 30 cm						
30.	A cut diamond sparkles be a) Hardness c) Emission of light by the	ecause of its e diamond	b) High refractive indexd) Absorption of light by the	e diamond						
31.	A convex lens has a focal l line as shown in the figure	ength <i>f</i> . If is cut into two e. The focal length of eac	o parts along the dotted h part will be							
	a) $\frac{f}{2}$	d) 2 <i>f</i>								

32.	The angle of minimum deviation for an incident light ray on an equilateral prism is equal to its refracting angle. The refractive index of its material is											
	a) - ١	$\frac{1}{2}$		b) √3			c) $\frac{\sqrt{3}}{2}$		d)	$\frac{3}{2}$		
33.	A man of length h requires a mirror, to see his ov a) $h/4$ b) $h/3$						complete im c) <i>h</i> /2	age of lengt	st equal to <i>h</i>			
34.	34. An astronomical telescope of ten-fold angular magnification has a length of 44 <i>cm</i> . The focal length objective is										ngth of the	
	a) 4	cm		b) 40 a	cm		c) 44 <i>cm</i>			d) 440 <i>cm</i>		
35.	5. Large aperture of telescope are used fora) Large imagec) Reducing lens aberration						b) Greater resolution d) Ease of manufacture					
36.	36. A plano-concave lens is made up of glass of refractive index 1.5 and the radius of the curvature of its curved face is 100 cm. What is the power of the lens? a) + 0.5 D b) -0.5 D c) -2 D d) +2 D									e of its		
37.	 When sunlight is incident on a prism, it produces a spectrum due to a) Interference b) Diffraction c) T.I.R. d) Variation in speed of different colors in prism 											
38.	 38. Two lenses of power +12 and -2 dioptres are placed in contact. What will the focal length of combination a) 10 cm b) 12.5 cm c) 16.6 cm d) 8.33 cm 									ombination		
39.	The	time requi	red for	the light to	pass throug	gh a gla	ss slab (refr	active index	x =1.5)	of thickness	s 4mm	
	a) 2	$(c = 3 \times 10)^{-5}$ s	1115	,speed of fi b) 2 ×	10^{11} s	space).	c) 2 × 10	⁻¹¹ s	d)	10 ⁻¹¹ s		
40.	40. Which one of the following spherical lenses will have zero power? The radii of curvature of the surfaces of the lenses are as given in the diagrams											
$R_1 \left(\begin{array}{c} R_2 \\ R_2 \end{array} \right) R \left(\begin{array}{c} C_1 \\ R_2 \end{array} \right) R \left(\begin{array}{c} C_1 \\ R_2 \end{array} \right) R \left(\begin{array}{c} R_1 \\ R$												
O.N	0	Answer		O.No	Answer		Q.No	Answer		O.No	Answer	
1		2		11	С.		21	d		31	d	

ġ	7 (115 (10)	di la	7 (15)	Q.110	71151101	ġ	7 (115) (11)
1	а	11	С	21	d	31	d
2	d	12	d	22	d	32	b
3	а	13	а	23	d	33	С
4	d	14	b	24	b	34	b
5	d	15	d	25	b	35	b
6	d	16	С	26	С	36	b
7	С	17	С	27	а	37	d
8	С	18	b	28	b	38	а
9	а	19	а	29	d	39	С
10	а	20	d	30	b	40	С

For more content visit the youtube channel "Abhishek Gupta"