MOST IMP MCQs on WAVE OPTICS for CBSE | JEE | NEET 2025

1.	The idea of secondary wavelets for the propagation of a wave was first given by						
	a) Newton	b) Huygen	c) Maxwell	d) Fresnel			
2.		mitting electromagnetic wa		Hz, then wavelength of the			
	a) 36.6 m	b) 40.5 m	c) 42.3 m	d) 50.9 m			
3.	Light of wavelength λ is incident on a slit of width d . The resulting diffraction pattern is observed on a screen at a distance D . The linear width of the principal maximum is equal to the width of the slit, if D equals						
	a) $\frac{d^2}{2\lambda}$	b) $\frac{d}{\lambda}$	c) $\frac{2\lambda^2}{d}$	d) $\frac{2\lambda}{d}$			
4.	by X- rays then the	pattern will reveal		0.6 <i>mm</i> . If yellow light is repla	aced		
	a) That the centralc) More number of	maxima is narrower f fringes	b) No diffraction pated) Less number of fr				
5.	the slits is 0.2 mm	-	n from the slits. The centra	$\lambda = 5000$ Å, the distance between the distance be			
	a) 1.67 <i>cm</i>	b) 1.5 <i>cm</i>	c) 0.5 cm	d) 5.0 <i>cm</i>			
6.	slits is 10^{-3} m. For a) The screen is mo	changing fringe width by 3 oved away from the slits by oved by 5 cm towards the soved by 3 cm to	3×10^{-5} m 7 5 cm slits	ngth 600 mm, the distance bet	weer		
7.	In Young's double-slit experiment the fringe width is β . If entire arrangement is placed in a liquid of refractive index n , the fringe width becomes						
	a) $\frac{\beta}{n+1}$	b) $neta$	c) $\frac{\beta}{n}$	d) $\frac{\beta}{n-1}$			

- **8.** A diffraction pattern is obtained using a beam of red light. What happens if the red light is replaced by blue light
 - a) No change
 - b) Diffraction bands become narrower and crowded together
 - c) Band become broader and farther apart
 - d) Bands disappear altogether

9.	The similarity between th	_					
	a) Both are electromagnetc) Both have the same special		b) Both are longitudinal wavesd) They can produce interference				
10.	A slit of width a is illuminated by red light of wavelength 6500Å. If the first minimum falls at $\theta = 30^{\circ}$, the value of a is						
	a) 6.5×10^{-4} mm	b) 1.3 micron	c) 3250Å	d) 2.6×10^{-4} cm			
11.	Two coherent sources of i		luce an interference pattern.				
	a) $I_1 + I_2$	b) $I_1^2 + I_2^2$	c) $(I_1 + I_2)^2$	d) $\left(\sqrt{I_1} + \sqrt{I_2}\right)^2$			
12.	_	n sodium light of certain	nt of wavelength 4358 Å is us wavelength is used, then 62 f	_			
	a) 6893 Å	b) 5904 Å	c) 5523 Å	d) 6429 Å			
13.	Two coherent monochron minimum possible intensi	•	nsities $\it I$ and $\it 4\it I$ are superpose m are	ed. The maximum and			
	a) 5 <i>I</i> and <i>I</i>	b) 5 <i>I</i> and 3 <i>I</i>	c) 9 <i>I</i> and <i>I</i>	d) 9 <i>I</i> and 3 <i>I</i>			
14.	In the phenomenon of inte		b) Created at dark fringes				
	a) Destroyed at bright frirc) Conserved but it is redi	-	d) Same at all points				
15.	In Young's double slit exp	eriment, a minimum is o	btained when the phase diffe	rence of super imposing			
	a) Zero	b) $(2n-1)\pi$	c) <i>n</i> π	d) $(n+1)\pi$			
16.	A single slit of width 0.20 placed 80 <i>cm</i> from the slit		light of wavelength 500 <i>nm.</i> T al bright fringe will be	-			
	a) 1 <i>mm</i>	b) 2 mm	c) 4 mm	d) 5 mm			
17.	fringe will be		ge when yellow light us repla				
	a) Wider	b) Narrower	c) Brighter	d) Fainter			
18.	Diffraction and interferen a) Nature of light is electro c) Nature is quantum		b) Wave nature d) Nature of light is transver	rse			
19.	Colours in thin films are due to a) Diffraction phenomenon c) Interference phenomenon		b) Scattering phenomenon d) Polarization phenomenon				

20.			s 7.8×10^{-5} cm and that of coincides with n^{th} red band c) 2	_				
21.	In Young's experiment, one slit is covered with a blue filter and the other (slit) with a yellow filter. Then the interference pattern							
	a) Will be blue	b) Will be yellow	c) Will be green	d) Will not be formed				
22. In a Young's double slit experiment, the fringe width is found to be 2 mm, when light of wavelengt is used. Find the change in fringe width if the whole apparatus is immersed in water of refractive 1.33.								
	a) 0.5 mm	b) 1 mm	c) 1.5 mm	d) 2 mm				
23.	In a YDSE bi-chromatic light of wavelengths $400 \ nm$ and $560 \ nm$ are used. The distance between the slits is $0.1 \ mm$ and the distance between the plane of the slits and the screen is $1m$. The minimum distance between two successive regions of complete darkness is							
	a) 4 mm	b) 5.6 mm	c) 14 mm	d) 28 mm				
24.		periment, the seventh max velength λ_2 is at distance d_2						
	a) $\frac{\lambda_1}{\lambda_2}$	b) $\frac{\lambda_2}{\lambda_1}$	c) $\frac{\lambda_1^2}{\lambda_2^2}$	$\mathrm{d})\frac{\lambda_2^2}{\lambda_1^2}$				
25.	 In Young's double slit experiment, if monochromatic light is replaced by white light a) All bright fringes become white b) All bright fringes have colours between violet and red c) Only the central fringe is white, all other fringes are coloured d) No fringes are observed 							
26.	. The figure shows a double slit experiment where P and Q are the slits. The path lengths PX and QX are $n\lambda$ and $(n+2)\lambda$ respectively, where n is a whole number and λ is the wavelength. Taking the central fringe as zero, what is formed at X							
	a) First bright	b) First dark	c) Second bright	d) Second dark				
27	The true elite et e dieter	o of 1 mm one illuminate d	by the light of wavelength (5 5 × 10 – 7 m. The				

27. The two slits at a distance of 1 mm are illuminated by the light of wavelength $6.5 \times 10^{-7} m$. The interference fringes are observed on a screen placed at a distance of 1m. The distance between third dark fringe and fifth bright fringe will be

a) 0.65 mm

b) 1.63 mm

c) 3.25 mm

d) 4.88 mm

28.	3. A Young's double slit experiment uses a monochromatic source. The shape of the interference fringes formed on a screen is							
	a) Hyperbola	b) Circle	c) Straight line	d) Parabola				
29.	For the construc	tive interference the path diff	ference between the two inte	rfering waves must be equal to				
	a) $(2n + 1)\lambda$	b) 2 <i>nπ</i>	c) <i>nλ</i>	d) $(2n+1)\frac{\lambda}{2}$				
30.	80. In Young's double slit experiment, phase difference between light waves reaching 3^{rd} bright fringe fringe the central fringe when $\lambda = 5000$ Åis							
	a) 6 π	b) 2 π	c) 4 π	d) zero				
31.	In a double slit interference experiment, the distance between the slits is 0.05 cm and screen is 2 m aways from the slits. The wavelength of light is 8.0×10^{-5} cm. The distance between successive fringes is a) 0.24 cm b) 3.2 cm c) 1.28 cm d) 0.32 cm							
32.	fringe from the o	central maxima is 30°. What is						
	a) 6000 Å	b) 5000 Å	c) 3000 Å	d) 1500 Å				
33.	In a double slit experiment, the screen is placed at a distance of 1.25 m from the slits. When the apparatus is immersed in water ($\mu_w = 4/3$), the angular width of a fringe is found to be 0.2°. When the experiment is performed in air with same set up, the angular width of the fringe is							
	a) 0.4°	b) 0.27°	c) 0.35°	d) 0.15°				
34.	Two coherent so		produce an interference patt	ern. The maximum intensity in				
	a) $I_1 + I_2$	b) $I_1^2 + I_2^2$	c) $(I_1 + I_2)^2$	d) $\left(\sqrt{I_1} + \sqrt{I_2}\right)^2$				
35.	Light appears to	travel in straight lines since						
	a) It is not absorc) Its wavelengt	bed by the atmosphere h is very small		b) It is reflected by the atmosphered) Its velocity is very large				
Asse	ertion and Reason	questions						
1	Statement 1:	· ·	from a rarer to a denser medi reduction in energy carried b	•				
	Statement 2:	The energy of a wave is proportional to velocity of wave						
2	2 Statement 1: When a tiny circular obstacle is placed in the path of light from some distance, a br spot is seen at the centre of shadow of the obstacle							
	Statement 2:	•						
3	Statement 1: For best contrast between maxima and minima in the interference pattern of Young's double slit experiment, the intensity of light emerging out of the two slits should be equal Statement 2: The intensity of interference pattern is proportional to square of amplitude							

Visit the official youtube channel "Abhishek Gupta"

For any queries write to "understandingphysics@yahoo.com"

Q.No	Answer	Q.No	Answer	Q.No	Answer	Q.No	Answer
1	b	11	d	21	d	31	d
2	а	12	b	22	С	32	а
3	а	13	С	23	d	33	b
4	b	14	С	24	а	34	d
5	b	15	b	25	С	35	С
6	d	16	С	26	С	AR1	d
7	С	17	b	27	b	AR2	С
8	b	18	b	28	а	AR3	b
9	d	19	С	29	С		
10	b	20	С	30	а		