CBSE Guess > Papers > Important Questions > Class XII > 2010 > Maths > Mathematics By Mr. M.P.Keshari
Continuity & Differentiability
5.3. Derivatives of Inverse Trigonometric Functions.
Q.1. If y = tan –1[{√(1 + x2) – √(1 – x2)}/{√(1 + x2) + √(1 – x2)}] , find dy/dx.
Solution :
We have, y = tan –1[{√(1 + x2) – √(1 – x2)}/{√(1 + x2) + √(1 – x2)}]
Put x2 = cos θ, then
y = tan –1[{√(1 + cos θ) – √(1 – cos θ)}/{√(1 + cos θ) + √(1 – cos θ)}]
= tan -1 [(√2 cos θ/2 – √2 sin θ/2)/(√2 cos θ/2 + √2 sin θ/2)]
= tan -1 [(1 – tan θ/2)/(1 + tan θ/2)]
= tan -1 [tan(π/4 – θ/2)]
= π/4 – θ/2 = π/4 – 1/2 cos –1 x2.
Differentiating w.r.t. x we get
dy/dx = 0 – 1/2. d/dx(cos-1 x2)
= – 1/2. – 1/√{1 – (x2)2}.d/dx(x2)
= 1/2 .1/√(1 – x4). 2x
= x/√(1 – x4). [Ans.]
Q.2. Differentiate the following with respect to x : tan –1[{√(1 + x) – √(1 – x)}/{√(1 + x) + √(1 – x)}]
Solution :
Let y = tan -1 [{√(1 + x) – √(1 – x)}/{√(1 + x) + √(1 – x)}]
= tan -1[{√(1 + cos θ) – √(1 – cos θ)}/{√(1 + cos θ) + √(1 – cos θ)}]
[Putting x = cos θ]
= tan-1[{√(2cos2 θ/2) – √(2sin2 θ/2)}/{√(2cos2 θ/2) + √(2sin2 θ/2)}]
= tan -1[(cos θ/2 – sin θ/2)/(cos θ/2 + sin θ/2)]
= tan -1[(1 – tan θ/2)/(1 + tan θ/2)]
= tan -1[tan(π/4 – θ/2)]
= π/4 – θ/2
= π/4 – (1/2)cos -1x.
Therefore, dy/dx = 0 – (1/2)[–1/√(1 – x2)]
= 1/[2√(1 – x2)]. [Ans.]
Q.3. If y = cot -1[{√(1 + sin x) + √(1 – sin x)}/{√(1 + sin x) – √(1 – sin x)}], find dy/dx.
Solution :
We have, y = cot -1[{√(1 + sin x) + √(1 – sin x)}/{√(1 + sin x) – √(1 – sin x)}].
Let us consider, 1 + sin x = cos2 x/2 + sin2 x/2 + 2sin x/2.cos x/2
= (cos x/2 + sin x/2)2
Therefore, √(1 + sin x) = cos x/2 + sin x/2.
Similarly, √(1 – sin x) = cos x/2 – sin x/2.
Therefore, y = cot –1[{(cos x/2 + sin x/2) + (cos x/2 – sin x/2)}
/{(cos x/2 + sin x/2) – (cos x/2 – sin x/2)}]
= cot -1[(2 cos x/2)/(2 sin x/2)]
= cot -1[cot x/2]
= x/2.
Therefore, dy/dx = 1/2. [Ans.]
Paper By Mr. M.P.Keshari
Email Id : [email protected]
Ph No. : 09434150289 |