CBSE Guess > Papers > Important Questions > Class XII > 2010 > Maths > Mathematics By Mr. M.P.Keshari Integrals 7.1. Integration as an Inverse Process of Differentiation. Q.1. Evaluate : ∫[(x2 + 1)/(x + 1)2]dx. Solution : We have, ∫[(x2 + 1)/(x + 1)2]dx = ∫[{(x + 1)2 – 2x }]dx Q.2. Evaluate : ∫[(x + 3)/(x2 + 4x + 3)] dx. Solution : We have, I = ∫[(x + 3)/(x2 + 4x + 3)] dx 7.2. Integration by Substitution. Q.1. Evaluate : ∫[x2/(1 + x3)] dx. Solution : We have, ∫[x2/(1 + x3)]dx = I (say) Q.2. Evaluate : ∫[{2x. tan –1(x2)}/(1 + x4)] dx. Solution : Let I = ∫[{2x. tan –1(x2)}/(1 + x4)] dx. Q.3. Evaluate : ∫[cos x/√(sin2 x – 2sin x – 3)] dx. Solution : Let I = ∫[cos x/√(sin2 x – 2 sin x – 3)] dx
Paper By Mr. M.P.Keshari |