Important Questions

CBSE Guess > Papers > Important Questions > Class XII > 2010 > Maths > Mathematics By Mr. M.P.Keshari

Integrals

7.4. Integration of Some Particular Function.

Q.1. Evaluate : ∫√[(1 – x)/(1 + x)] dx.

Solution :

We have, ∫√[(1 – x)/(1 + x)] dx = ∫√[{(1 – x)(1 – x)}/{(1 + x)(1 – x)}] dx
= ∫[(1 – x)/√(1 – x2)] dx
= ∫[1/√(1 – x2)] dx + 1/2 ∫[(– 2x)/√(1 – x2)] dx
= sin –1x + 1/2 ∫dt/√t []
= sin –1x + 1/2 ∫t–1/2dt
= sin –1x + 1/2 [(t1/2)/(1/2)] + c
= sin –1x + √(1 – x2) + c. [Ans.]

Q.2. Evaluate : ∫dx/√(x2 – 3x + 2).

Solution :

We have,
∫dx/√(x2 – 3x + 2) = ∫dx/√{(x2 – 3x + 9/4) – 1/4}
= ∫dx/√{(x – 3/2)2 – (1/2)2}
= [(x – 3/2)√{(x – 3/2)2 – (1/2)2}]/2 – {(1/2)2}/2 log |(x – 3/2) + √{(x – 3/2)2 – (1/2)2}| + c
= [(x – 3/2)√(x2 – 3x +2)]/2 – 1/8 log |(x – 3/2) + √(x2 – 3x + 2)| + c. [Ans.]

Q.3. Evaluate : ∫[(3x + 1)/(2x2 – 2x + 3)] dx.

Solution :

We have
I = ∫[(3x + 1)/(2x2 – 2x + 3)] dx
Here, 3x + 1 = 3/4.d/dx(2x2 – 2x + 3) + 5/2.
Therefore, I = ∫[{3/4(4x – 2) + 5/2}/(2x2 – 2x + 3)] dx
= 3/4∫[(4x – 2)/(2x2 – 2x + 3)] dx + 5/2∫dx/(2x2 – 2x + 3)
= 3/4I1 + 5/2I2 + c ----------------- (1)
Where, I1 = ∫[(4x – 2)/(2x2 – 2x + 3)] dx
Put 2x2 – 2x + 3 = t, then (4x – 2) dx = dt
Therefore, I1 = ∫dt/t = log |t| = log |2x2 – 2x + 3| ---------------- (2)
and I2 = ∫dx/(2x2 – 2x + 3)
= 1/2∫dx/(x2 – x + 3/2)
= 1/2∫dx/[(x – 1/2)2 + (√5/2)2]
= 1/2.1/(√5/2) tan –1[(x – 1/2)/(√5/2)]
[As,∫dx/(x2 + a2) = 1/a tan –1(x/a)]
= 1/√5tan –1[(2x – 1)/√5] ----------------------- (3)
using (1), (2) and (3), we get
I = 3/4log|2x2 – 2x + 3| + √5/2tan –1[(2x – 1)/√5] + c. [Ans.]

Maths Paper (With Solutions) By : Mr. M. P. Keshari
Continuity & Differentiability Probability Vector Algebra
Differential Equation Application of Integrals 3D Geometry
Linear Programming Application of derivatives Integrals
Maxima & Minima    

Paper By Mr. M.P.Keshari
Email Id : [email protected]
Ph No. : 09434150289