CBSE Guess > Papers > Important Questions > Class XII > 2010 > Maths > Mathematics By Mr. M.P.Keshari
Integrals
Q.9. Using properties of definite integrals, evaluate the following :
0∫π/2 sin2x logtanx dx.
Solution :
Let I = 0∫π/2 sin2x logtanx dx. [0∫af(x)dx = 0∫af(a – x)dx]
= 0∫π/2 sin2(π/2 – x) logtan (π/2 – x) dx
= 0∫π/2 sin(π – 2x) logcotx dx
= – 0∫π/2 sin2x logtanx dx = – I
Therefore, 2I = 0 => I = 0. [Ans.]
Q.10. Evaluate : π/6∫π/3[1/{1 + √(tan x)}]dx.
Solution :
Let I = π/6∫π/3[1/{1 +√(tan x)} ]dx ------------------------- (1)
[Using a∫bf(x)dx = a∫bf(a + b – x)dx]
I = π/6∫π/3 dx/[1 + √{tan(π/3 + π/6 – x)}] = π/6∫π/3dx/[1 + √cot x] = π/6∫π/3[(√tan x)/(√tan x + 1)]dx ---------------------- (2)
Adding (1) and (2) we get
2I = π/6∫π/3 1. dx = [x]π/6π/3 = π/3 – π/6 = π/6. [Ans.]
Q.11. Evaluate : 0∫π [(x tan x)/(sec x cosec x)]dx.
Solution :
Let I = 0∫π[(x tan x)/(sec x cosec x)]dx
= 0∫π[{(x sin x/cos x)}/{(1/cos x)(1/sin x)}]dx
= 0∫πx sin2 x dx --------------- (1)
= 0∫π(π – x) sin2 (π – x)dx
= 0∫π(π – x) sin2 x dx -------------(2)
Adding (1) and (2), we get
2I = 0∫π(x + π – x) sin2 x dx
= π0∫π sin2 x dx
= π0∫π[(1 – cos2x)/2]dx
= π/2[x – sin 2x/2]0π
= π/2[π – sin 2π/0 – 0]
= π/2.π = π2/2
Therefore, I = π2/4. [Ans.]
Q.12. Evaluate : 0∫1cot -1[1 – x + x2] dx.
Solution :
Let I = 0∫1cot -1[1 – x + x2]dx
= 0∫1tan -1[1/(1 – x + x2)]
= 0∫1tan -1[{x + (1 - x)}/{1 – x(1 – x)}]dx
= 0∫1[tan -1x + tan –1(1 – x)]dx
= 0∫1tan -1x dx + 0∫1tan –1{1 – (1 – x)} dx
= 0∫1tan -1 x dx + 0∫1tan –1x dx
= 2 0∫1tan -1x dx
= 2 0∫1tan -1. 1 dx
= 2{[x tan -1x]01 – 1/2 0∫12x/(1 – x2) dx }
= 2{[1.tan -1(1) – 0] – 1/2[log(1 + x2)]01}
= 2[π/4 -1/2(log 2 – log 1]
= 2[π/4 -1/2log2]
= π/2 – log2. [Ans.]
Paper By Mr. M.P.Keshari
Email Id : [email protected]
Ph No. : 09434150289 |